精英家教网 > 高中数学 > 题目详情

【题目】为了了解初三女生身高情况,某中学对初三女生身高情况进行了一次测量,所得数据整理后列出了频率分布表如下:

组别

频数

频率

145.5~149.5

1

0.02

149.5~153.5

4

0.08

153.5~157.5

20

0.40

157.5~161.5

15

0.30

161.5~165.5

8

0.16

165.5~169.5

m

n

合计

M

N


(1)求出表中m,n,M,N所表示的数分别是多少?
(2)画出频率分布直方图;
(3)全体女生中身高在哪组范围内的人数最多?

【答案】
(1)解:由频率的意义知,N=1,

n=1﹣(0.02+0.08+0.40+0.30+0.16)=0.04,

由第一组的频率和频数,可求得m=2,M=1+4+20+15+8+2=50.

∴m=2,n=0.04,M=50,N=1.


(2)解:频率分布直方图如图.


(3)解:由频率分步表可得全体女生中身高在153.5~157.5这一组范围内的人数最多,为20人.
【解析】(1)由频率的意义知,N=1,n=1﹣(0.02+0.08+0.40+0.30+0.16),由第一组的频率和频数,可求得m=2,M=1+4+20+15+8+2,从而得到结论.(2)频率分布直方图如图.(3)由频率分步表可得全体女生中身高在153.5~157.5这一组范围内的人数最多.
【考点精析】本题主要考查了频率分布直方图和用样本的频率分布估计总体分布的相关知识点,需要掌握频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息;样本数据的频率分布表和频率分布直方图,是通过各小组数据在样本容量中所占比例大小来表示数据的分布规律,它可以让我们更清楚的看到整个样本数据的频率分布情况,并由此估计总体的分布情况才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设x,y满足约束条件: ;则z=x﹣2y的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c分别是锐角△ABC的三个内角A,B,C的对边,且 =
(1)求A的大小;
(2)当 时,求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=Asin(ωx+φ)(A>0,ω>0,﹣<φ< , x∈R)的部分图象如图所示.
(1)求函数y=f(x)的解析式;
(2)当x∈[﹣]时,求f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为(
A.9.4,0.484
B.9.4,0.016
C.9.5,0.04
D.9.5,0.016

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长都相等的四面体PABC中,DEF分别是ABBCCA的中点,则下面四个结论中不成立的是 ( )
A.BC∥平面PDF
B.DF⊥平面PAE
C.平面PDF⊥平面ABC
D.平面PAE⊥平面ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,

(1)当 时,求证:BM∥平面ADEF;
(2)若平面BDM与平面ABF所成锐角二面角的余弦值为 时,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别是角A、B、C的对边,且(2a+c)cosB+bcosC=0.
(Ⅰ)求角B;
(Ⅱ)若 ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为激励创新,计划逐年加大研发资金投入,若该公司2015年全年投入研发资金超过130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是年.(参考数据:lg1.12≈0.05,lg1.3≈0.11,lg2≈0.30).

查看答案和解析>>

同步练习册答案