【题目】某班学生中喜爱看综艺节目的有18人,体育节目的有27人,时政节目的有9人,现采取分层抽样的方法从这些学生中抽取6名学生.
(Ⅰ)求应从喜爱看综艺节目,体育节目,时政节目的学生中抽取的学生人数;
(Ⅱ)若从抽取的6名学生中随机抽取2人分作一组,
(1)列出所有可能的结果;
(2)求抽取的2人中有1人喜爱综艺节目1人喜爱体育节目的概率.
【答案】(Ⅰ)2,3,1(Ⅱ)(1)见解析(2)![]()
【解析】
(Ⅰ)根据抽样比计算各层抽取的人数;
(Ⅱ)(1)列举法求出所有的可能结果;(2)由(1)计算所有满足条件的随机事件的个数,再计算概率.
(Ⅰ)一共有18+27+9=54(人)
抽样比是
,
所以喜欢看综艺节目的有
(人),体育节目的有
(人),
时政节目的有
(人)
应从喜爱看综艺节目,体育节目,时政节目的学生中抽取的学生人数分别是2,3,1.
(Ⅱ)(1)记喜爱综艺类节目的两人为
,
,记喜爱体育类节目的三人为
,
,
,记喜爱时政类节目的一人为
,则任取两人的所有情况为:
,
,
,
,
,
,
,
,
,
,
,
,
,
,![]()
共15种
(2)有1人喜爱综艺节目1人喜爱体育节目包含
,
,![]()
,
,
,共6种情况,则抽取的2人中有1人喜爱综艺节目1人喜爱体育节目的概率
.
科目:高中数学 来源: 题型:
【题目】一个三角形数表按如下方式构成(如图:其中项数
):第一行是以4为首项,4为公差的等差数列,从第二行起,每一个数是其肩上两个数的和,例如:
;
为数表中第
行的第
个数.
…
![]()
…![]()
…![]()
……
(1)求第2行和第3行的通项公式
和
;
(2)证明:数表中除最后2行外每一行的数都依次成等差数列,并求
关于
的表达式;
(3)若
,
,试求一个等比数列
,使得
,且对于任意的
,均存在实数
,当
时,都有
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
是双曲线
的一条渐近线,点![]()
都在双曲线
上,直线
与
轴相交于点
,设坐标原点为
.
(1)求双曲线
的方程,并求出点
的坐标(用
表示);
(2)设点
关于
轴的对称点为
,直线
与
轴相交于点
.问:在
轴上是否存在定点
,使得
?若存在,求出点
的坐标;若不存在,请说明理由.
(3)若过点
的直线
与双曲线
交于
两点,且
,试求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,A、B是海岸线OM、ON上两个码头,海中小岛有码头Q到海岸线OM、ON的距离分别为
、
,测得
,
,以点O为坐标原点,射线OM为x轴的正半轴,建立如图所示的直角坐标系,一艘游轮以
小时的平均速度在水上旅游线AB航行(将航线AB看作直线,码头Q在第一象限,航线BB经过点Q).
![]()
(1)问游轮自码头A沿
方向开往码头B共需多少分钟?
(2)海中有一处景点P(设点P在
平面内,
,且
),游轮无法靠近,求游轮在水上旅游线AB航行时离景点P最近的点C的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,记棱长为1的正方体
,以
各个面的中心为顶点的正八面体为
,以
各面的中心为顶点的正方体为
,以
各个面的中心为顶点的正八面体为
,……,以此类推得一系列的多面体
,设
的棱长为
,则数列
的各项和为________.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
![]()
(1)作出函数
的图像;
(2)根据(1)所得图像,填写下面的表格:
性质 | 定义域 | 值域 | 单调性 | 奇偶性 | 零点 |
|
(3)关于
的方程
恰有6个不同的实数解,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
:
(
)的右焦点为
,短轴的一个端点
到
的距离等于焦距.
![]()
(1)求椭圆
的标准方程;
(2)设
、
是四条直线
,
所围成的矩形在第一、第二象限的两个顶点,
是椭圆
上任意一点,若
,求证:
为定值;
(3)过点
的直线
与椭圆
交于不同的两点
、
,且满足△
与△
的面积的比值为
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数
,关于
的方程
,给出下列结论
①存在这样的实数
,使得方程有3个不同的实根
②不存在这样的实数
,是的方程有4个不同的实根
③存在这样的实数
,是的方程有5个不同的实根
④不存在这样的实数
,是的方程有6个不同的实根
其中正确的个数是( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com