已知函数
(
)
(1)求
的定义域;
(2)问是否存在实数
、
,当
时,
的值域为
,且
若存在,求出
、
的值,若不存在,说明理由.
(1)(0,+
);(2)![]()
解析试题分析:(1)由题意可得对数的真数大于零即
.又因为
.所以可得
.所以可得定义域的结论.
(2)由(1)可得在(1,+∞)上递增.又由于f(x)的值域为(0,+∞)所以f(1)=0.所以
.又因为
.由此可解得
.本题通过对数的定义域,渗透参数的不等式的解法是难点.通过定义域与值域的关系建立两个等式即可求出相应的结论.
试题解析:(1)由
得
.所以x>0.所以f(x)的定义域为(0,+
).
(2)令
.又
.所以g(x)在(0,+
)上为增函数.当
时.g(x)>1.所以g(1)=1,即
…①.又因为f(2)=lg2.所以
…②.解由①②得.
.
考点:1.对数的定义域.2.函数的单调性.3.含参的不等式的解法.
科目:高中数学 来源: 题型:解答题
定义在
上的函数
同时满足以下条件:
①
在(0,1)上是减函数,在(1,+∞)上是增函数;
②
是偶函数;
③
在x=0处的切线与直线
y=x+2垂直.
(1)求函数
=
的解析式;
(2)设g(x)=
,若存在实数x∈[1,e],使
<
,求实数m的取值范围..
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=
,x∈[1,3],
(1)求f(x)的最大值与最小值;
(2)若
于任意的x∈[1,3],t∈[0,2]恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
.![]()
(1)请在所给的平面直角坐标系中画出函数
的图像;
(2)根据函数
的图像回答下列问题:
①求函数
的单调区间;
②求函数
的值域;
③求关于
的方程
在区间
上解的个数.
(回答上述3个小题都只需直接写出结果,不需给出演算步骤)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
定义在
上的函数
,如果对任意
,恒有
(
,
)成立,则称
为
阶缩放函数.
(1)已知函数
为二阶缩放函数,且当
时,
,求
的值;
(2)已知函数
为二阶缩放函数,且当
时,
,求证:函数
在
上无零点;
(3)已知函数
为
阶缩放函数,且当
时,
的取值范围是
,求
在
(
)上的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com