精英家教网 > 高中数学 > 题目详情
以直角坐标系的原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的长度单位.直角坐标系中A点坐标为(-1,0),则A点极坐标为
(1,π)
(1,π)
分析:先利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,将点(2,-2)的直角坐标,化成极坐标即可.
解答:解:∵点(-1,0)中
x=-1,y=0,
∴ρ=
x2+y2
=1,
tanθ=
y
x
=0,∴取θ=π.
∴点(-1,0)的极坐标为(1,π)
故答案为(1,π).
点评:本小题主要考查点的极坐标与直角坐标方程的互化,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

以直角坐标系的原点为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位.已知直线l的极坐标方程为ρsin(θ-
π
3
)=6
,圆C的参数方程为
x=10cosθ
y=10sinθ
,(θ为参数),求直线l被圆C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程选做题)以直角坐标系的原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的长度单位.已知圆C的参数方程为
x=2cosα
y=2sinα
(α为参数),直线l的极坐标方程为ρsin(θ+
π
4
)=
2
,则直线l被圆C所截的弦长为
2
2
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

以直角坐标系的原点为极点,x轴的非负半轴为极轴,并在两种坐标系中取相同的长度单位,点M的极坐标是(4,
3
)
,则点M直角坐标是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(选修4-4:坐标与参数方程) 
以直角坐标系的原点为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位.
已知直线ι的极坐标方程为ρsin(θ-
π
3
)=6
,圆C的参数方程为
x=10cos θ
y=10sin θ
(θ为参数),求直线ι被圆C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(注意:本小题为选做题,A,B两题选做其中一题,若都做了,则按A题答案给分)
A.当x,y满足条件|x-1|+|y+1|<1时,变量u=
x-1
y-2
的取值范围是
-
1
3
<u<
1
3
-
1
3
<u<
1
3

B.以直角坐标系的原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的长度单位.已知直线的极坐标方程为θ=
π
4
(ρ∈R),它与曲线
x=1+2cosα
y=2+2sinα
(α为参数)相交于A,B两点,则以线段AB为直径的圆的面积为
2
2

查看答案和解析>>

同步练习册答案