精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+bx2+cx+d,(x∈R)在任意一点(x,f(x))处的切线的斜率为k=(x-2)(x+1).
(1)求a,b,c的值;
(2)求函数f(x)的单调区间;
(3)若y=f(x)在-3≤x≤2上的最小值为,求y=f(x)在R上的极大值.
【答案】分析:(1)由f′(x)=3ax2+2bx+c和f(x)在(x,f(x))处的切线斜率k=(x-2)(x+1),能求出求a,b,c的值.
(2)由f′(x)=x2-x-2=(x-2)(x+1),能求出函数f(x)的单调区间.
(3)由f′(x)=(x-2)(x+1)及-3≤x≤2,列表能求出函数f(x)在R上的极大值.
解答:解:(1)f′(x)=3ax2+2bx+c,(1分)
而f(x)在(x,f(x))处的切线斜率k=f′(x)=3ax2+2bx+c=(x-2)(x+1),
∴3a=1,2b=-1,c=-2,
∴a=,b=-,c=-2.(3分)
(2)∵f(x)=
由f′(x)=x2-x-2
=(x-2)(x+1)≥0,
知f(x)在(-∞,-1]和[2,+∞)上是增函数,
由f′(x)=(x-2)(x+1)≤0,
知f(x)在[-1,2]上为减函数.(7分)
(3)由f′(x)=(x-2)(x+1)及-3≤x≤2,可列表
x[-3,-1)-1(-1,2]
f′(x)+-
f(x)极大值
f(x)在[-3,2]上的最小值产生于f(-3)和f(2),
由f(-3)=-,f(2)=
知f(-3)<f(2),(9分)
于是f(-3)=-
则d=10.(11分)
∴f(x)max=f(-1)=
即所求函数f(x)在R上的极大值为.(12分)
点评:本题考查函数的切线方程、单调区间和极值,综合性强,难度大,计算繁琐,容易出错.解题时要认真审题,仔细解答,注意导数的性质的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案