精英家教网 > 高中数学 > 题目详情
求函数y=(1+cos2x)3的导数.
分析:利用复合函数的导数公式计算即可.
解答:解:∵y=(1+cos2x)3
∴y′=3(1+cos2x)2•(cos2x)′
=3(1+cos2x)2•(-sin2x)•(2x)′
=-6sin2x•(1+cos2x)2
=-6sin2x•(2cos2x)2
=-6sin2x•4cos4x
=-48sinxcos5x.
点评:本题考查复合函数的导数,考查正弦函数与余弦函数的二倍角公式,考查分析与运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知向量
m
=(2a-c,b)与向量
n
=(cosB,-cosC)互相垂直.
(1)求角B的大小;
(2)求函数y=2sin2C+cos(B-2C)的值域;
(3)若AB边上的中线CO=2,动点P满足
AP
=sin2θ•
AO
+cos2θ•
AC
(θ∈R)
,求(
PA
+
PB
)•
PC
的最小值.

查看答案和解析>>

同步练习册答案