精英家教网 > 高中数学 > 题目详情
设函数f(x)的定义域是(-∞,+∞),满足条件:存在x1≠x2,使得f(x1)≠f(x2),对任何x和y,f(x+y)=f(x)•f(y)成立.求:(1)f(0); (2)对任意值x,判断f(x)值的正负.
分析:(1)由已知中,存在x1≠x2,使得f(x1)≠f(x2),可知函数不是常数函数,又由对任何x和y,f(x+y)=f(x)•f(y)成立,令y=0,可得f(0)的值.
(2)根据对任何x和y,f(x+y)=f(x)•f(y)成立,令y=x≠0,可得f(2x)=f2(x)≥0,结合(1)中结论f(x)≠0,可得f(2x)>0,即f(x)>0.
解答:解:(1)∵对任何x和y,f(x+y)=f(x)•f(y)
令y=0
则f(x)=f(x)•f(0)
又∵存在x1≠x2,使得f(x1)≠f(x2),
即函数不为常数函数,即f(x)=0不成立
∴f(0)=1.
(2)令y=x≠0,
则f(2x)=f(x)•f(x)=f2(x)≥0
又由(1)中f(x)≠0,
∴f(2x)>0,即f(x)>0,
故对任意x,f(x)>0恒成立.
点评:本题考查的知识点是抽象函数的应用,求抽象函数的函数值,其中解答中易忽略条件:存在x1≠x2,使得f(x1)≠f(x2)的意义,而得到错解f(0)=0和f(x)≥0.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-
3
2
)与b=f(
15
2
)的大小关系为
a>b
a>b

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的定义域为D,若对于任意x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为非减函数.设函数f(x)为定义在[0,1]上的非减函数,且满足以下三个条件:①f(0)=0;②f(1-x)+f(x)=1,x∈[0,1]; ③当x∈[0,
1
4
]
时,f(x)≥2x恒成立.则f(
3
7
)+f(
5
9
)
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-数学公式)与b=f(数学公式)的大小关系为________.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年安徽省蚌埠二中高三(上)12月月考数学试卷(文科)(解析版) 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-)与b=f()的大小关系为   

查看答案和解析>>

科目:高中数学 来源:山东省月考题 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x﹣cosx,则a=f(﹣)与b=f()的大小关系为(    ).

查看答案和解析>>

同步练习册答案