精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱柱中,侧面底面,底面为直角梯形,其中O中点.

1)求证:平面

2)求凸多面体的体积.

【答案】1)证明见解析(2

【解析】

(1)连接,推导出四边形为平行四边形,从而,由此能证明平面
2)推导出,从而底面,再证明底面,又

,则凸多面体的体积可求.

1)证明:如图,连接

则四边形为正方形,所以

所以四边形为平行四边形,

所以

平面平面

所以平面

2)解法一:因为O中点,所以

又侧面底面,所以底面

因为所以是等腰直角三角形,所以.

易证,又侧面底面,所以底面

解法二:因为O中点,所以

又侧面底面,所以底面

因为,所以

所以四边形为平行四边形,又

所以四边形为矩形

于点E,因为底面,所以

,所以

所以四棱锥

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆的参数方程为为参数),以直角坐标系的原点为极点,轴正半轴为极轴建立极坐标系.

(1)求圆的极坐标方程;

(2)设曲线的极坐标方程为,曲线的极坐标方程为,求三条曲线所围成图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一个不透明的袋子,装有4个大小形状完全相同的小球,球上分别标有数字1234.现按如下两种方式随机取球两次,每种方式中第1次取到球的编号记为,第2次取到球的编号记为.

1)若逐个不放回地取球,求是奇数的概率;

2)若第1次取完球后将球再放回袋中,然后进行第2次取球,求直线与双曲线有公共点的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校针对校食堂饭菜质量开展问卷调查,提供满意与不满意两种回答,调查结果如下表(单位:人):

学生

高一

高二

高三

满意

500

600

800

不满意

300

200

400

1)求从所有参与调查的人中任选1人是高三学生的概率;

2)从参与调查的高三学生中,用分层抽样的方法抽取6人,在这6人中任意选取2人,求这两人对校食堂饭菜质量都满意的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中, 平面,,为邻边作平行四边形,连接.

(1)求证:平面

(2)若二面角.

求证:平面平面

求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋子中有四张卡片,分别写有“瓷、都、文、明”四个字,有放回地从中任取一张卡片,将三次抽取后“瓷”“都”两个字都取到记为事件,用随机模拟的方法估计事件发生的概率.利用电脑随机产生整数0,1,2,3四个随机数,分别代表“瓷、都、文、明”这四个字,以每三个随机数为一组,表示取卡片三次的结果,经随机模拟产生了以下18组随机数:

232

321

230

023

123

021

132

220

001

231

130

133

231

031

320

122

103

233

由此可以估计事件发生的概率为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C)的焦距等于短轴的长,椭圆的右顶点到左焦点的距离为

1)求椭圆C的标准方程;

2)已知直线l)与椭圆C交于AB两点,在y轴上是否存在点,使得,且,若存在,求实数t的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高铁是一种快捷的交通工具,为我们的出行提供了极大的方便。某高铁换乘站设有编号为①,②,③,④,⑤的五个安全出口,若同时开放其中的两个安全出口,疏散名乘客所需的时间如下:

安全出口编号

①②

②③

③④

④⑤

①⑤

疏散乘客时间(s)

120

220

160

140

200

则疏散乘客最快的一个安全出口的编号是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,分别是椭圆的顶点.过坐标原点的直线交椭圆于两点,其中在第一象限.过点轴的垂线,垂足为.设直线的斜率为.

1)若直线平分线段,求的值;

2)当时,求点到直线的距离.

查看答案和解析>>

同步练习册答案