(2011•浙江)已知抛物线C1:x2=y,圆C2:x2+(y﹣4)2=1的圆心为点M
(1)求点M到抛物线C1的准线的距离;
(2)已知点P是抛物线C1上一点(异于原点),过点P作圆C2的两条切线,交抛物线C1于A,B两点,若过M,P两点的直线l垂直于AB,求直线l的方程.![]()
科目:高中数学 来源: 题型:解答题
已知椭圆
的离心率为
,
为椭圆在
轴正半轴上的焦点,
、
两点在椭圆
上,且
,定点
.
(1)求证:当
时
;
(2)若当
时有
,求椭圆
的方程;
(3)在(2)的椭圆中,当
、
两点在椭圆
上运动时,试判断
是否有最大值,若存在,求出最大值,并求出这时
、
两点所在直线方程,若不存在,给出理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分13分)如图,分别过椭圆
:
左右焦点
、
的动直线
相交于
点,与椭圆
分别交于
不同四点,直线
的斜率
、
、
、
满足
.已知当
轴重合时,
,
.
(1)求椭圆
的方程;
(2)是否存在定点
,使得
为定值.若存在,求出
点坐标并求出此定值,若不存在,说明理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的左右焦点分别为
,点
为短轴的一个端点,
.
(1)求椭圆
的方程;
(2)如图,过右焦点
,且斜率为
的直线
与椭圆
相交于
两点,
为椭圆的右顶点,直线
分别交直线
于点
,线段
的中点为
,记直线
的斜率为
.
求证:
为定值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C过点
,两焦点为
、
,
是坐标原点,不经过原点的直线
与该椭圆交于两个不同点
、
,且直线
、
、
的斜率依次成等比数列.
(1)求椭圆C的方程;
(2)求直线
的斜率
;
(3)求
面积的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线
="1"
的两个焦点为
、
,P是双曲线上的一点,
且满足
,
(1)求
的值;
(2)抛物线
的焦点F与该双曲线的右顶点重合,斜率为1的直线经过点F与该抛物线交于A、B两点,求弦长|AB|.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直角坐标平面上给定一曲线y2=2x,
(1)设点A的坐标为
,求曲线上距点A最近的点P的坐标及相应的距离|PA|.
(2)设点A的坐标为(a,0),a∈R,求曲线上的点到点A距离的最小值dmin,并写出dmin=f(a)的函数表达式.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,已知椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率e=
,斜率为2的直线l过点A(2,3).![]()
(1)求椭圆E的方程;
(2)在椭圆E上是否存在关于直线l对称的相异两点?若存在,请找出;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的两个焦点分别为
和
,离心率
.
(1)求椭圆
的方程;
(2)若直线
(
)与椭圆
交于不同的两点
、
,且线段
的垂直平分线过定点
,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com