【题目】已知
(
,
是虚数单位),
,定义:
,
,给出下列命题:
①对任意
,都有
;
②若
是复数
的共轭复数,则
恒成立;
③
,则
;
④对任意
,结论
恒成立;
则其中真命题是( )
A.①②③④B.②③④C.②④D.①③
科目:高中数学 来源: 题型:
【题目】棱长为1的正方体
中,点
、
分别在线段
、
上运动(不包括线段端点),且
.以下结论:①
;②若点
、
分别为线段
、
的中点,则由线
与
确定的平面在正方体
上的截面为等边三角形;③四面体
的体积的最大值为
;④直线
与直线
的夹角为定值.其中正确的结论为______.(填序号)
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题:
①经过定点
的直线都可以用方程
表示;
②经过定点
的直线都可以用方程
表示;
③不经过原点的直线都可以用方程
表示;
④经过任意两个不同的点
、
的直线都可以用方程
表示,
其中真命题的个数为( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从盛满2升纯酒精的容器里倒出1升纯酒精,然后填满水,再倒出1升混合溶液后又用水填满,以此继续下去,则至少应倒 次后才能使纯酒精体积与总溶液的体积之比低于10%.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】抛物线顶点在原点,焦点在x轴上,且过点(4,4),焦点为F.
(1)求抛物线的焦点坐标和标准方程;
(2)P是抛物线上一动点,M是PF的中点,求M的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形
是菱形,
是矩形,平面
平面
,
,
,
,
为
的中点.
![]()
(1)求证:
∥平面
;
(2)在线段
上是否存在点
,使二面角
的大小为
?若存在,求出
的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在平面直角坐标系
中,动点
与两定点
连线的斜率之积为
,记点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)若过点
的直线
与曲线
交于
两点,曲线
上是否存在点
使得四边形
为平行四边形?若存在,求直线
的方程,若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com