【题目】某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)
(1)应收集多少位女生样本数据?
(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:
.估计该校学生每周平均体育运动时间超过4个小时的概率.
![]()
(3)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有
的把握认为“该校学生的每周平均体育运动时间与性别有关”.
附:
![]()
| 0.10 | 0.05 | 0.010 | 0.005 |
| 2.706 | 3.841 | 6.635 | 7.879 |
【答案】(1)90;(2)0.75;(3)有
的把握认为“该校学生的每周平均体育运动时间与性别有关”.
【解析】
试题分析:(1)利用分层抽样的应用可以算出
,记应收集90位女生的样本数据.(2)根据频率分布直方图可得
.(3)根据题意300位学生中有
人的每周平均体育运动时间超过4小时,75人的每周平均体育运动时间不超过4小时.又因为样本数据中有210份是关于男生的,90份是关于女生的.可以画出每周平均体育运动时间与性别列联表,计算
.则有
的把握认为“该校学生的每周平均体育运动时间与性别有关”.
(1)
,所以应收集90位女生的样本数据.
由频率分布直方图得
,该校学生每周平均体育运动时间超过4个小时的概率为
.
由(2)知,300位学生中有
人的每周平均体育运动时间超过4小时,75人的每周平均体育运动时间不超过4小时.又因为样本数据中有210份是关于男生的,90份是关于女生的.所以每周平均体育运动时间与性别列联表如下:
每周平均体育运动时间与性别列联表
男生 | 女生 | 总计 | |
每周平均体育运动时间不超过4小时 | 45 | 30 | 75 |
每周平均体育运动时间超过4小时 | 165 | 60 | 225 |
总计 | 210 | 90 | 300 |
结合列联表可算得
.
有
的把握认为“该校学生的每周平均体育运动时间与性别有关”.
科目:高中数学 来源: 题型:
【题目】如图,在边长为6的正方形
中,弧
的圆心为
,过弧
上的点
作弧
的切线,与
、
分别相交于点
、
,
的延长线交
边于点
.
![]()
(1)设
,
,求
与
之间的函数解析式,并写出函数定义域;
(2)当
时,求
的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】足球,有“世界第一运动的美誉,是全球体育界最具影响力的单项体育运动之一.足球传球是足球运动技术之一,是比赛中组织进攻、组织战术配合和进行射门的主要手段.足球截球也是足球运动技术的一种,是将对方控制或传出的球占为己有,或破坏对方对球的控制的技术,是比赛中由守转攻的主要手段.这两种运动技术都需要球运动员的正确判断和选择.现有甲、乙两队进行足球友谊赛,A、B两名运动员是甲队队员,C是乙队队员,B在A的正西方向,A和B相距20m,C在A的正北方向,A和C相距14
m.现A沿北偏西60°方向水平传球,球速为10
m/s,同时B沿北偏西30°方向以10m/s的速度前往接球,C同时也以10m/s的速度前去截球.假设球与B、C都在同一平面运动,且均保持匀速直线运动.
![]()
(1)若C沿南偏西60°方向前去截球,试判断B能否接到球?请说明理由.
(2)若C改变(1)的方向前去截球,试判断C能否球成功?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=2cos2x﹣cos(2x﹣
).
(1)求f(x)的周期和最大值;
(2)已知△ABC中,角A.B.C的对边分别为A,B,C,若f(π﹣A)=
,b+c=2,求a的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从甲、乙两名学生中选拔一人参加射箭比赛,为此需要对他们的射箭水平进行测试.现这两名学生在相同条件下各射箭10次,命中的环数如下:
甲 | 8 | 9 | 7 | 9 | 7 | 6 | 10 | 10 | 8 | 6 |
乙 | 10 | 9 | 8 | 6 | 8 | 7 | 9 | 7 | 8 | 8 |
(1)计算甲、乙两人射箭命中环数的平均数和标准差;
(2)比较两个人的成绩,然后决定选择哪名学生参加射箭比赛.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下图中的几何体是由两个有共同底面的圆锥组成.已知两个圆锥的顶点分别为P、Q,高分别为2、1,底面半径为1.A为底面圆周上的定点,B为底面圆周上的动点(不与A重合).下列四个结论:
![]()
①三棱锥
体积的最大值为
;
②直线PB与平面PAQ所成角的最大值为
;
③当直线BQ与AP所成角最小时,其正弦值为
;
④直线BQ与AP所成角的最大值为
;
其中正确的结论有___________.(写出所有正确结论的编号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,定义域为
上的函数
是由一条射线及抛物线的一部分组成.利用该图提供的信息解决下面几个问题.
![]()
(1)求
的解析式;
(2)若
关于的方程
有三个不同解,求
的取值范围;
(3)若
,求
的取值集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中,假命题为( )
A.存在四边相等的四边形不是正方形
B.z1 , z2∈C,z1+z2为实数的充分必要条件是z1 , z2互为共轭复数
C.若x,y∈R,且x+y>2,则x,y至少有一个大于1
D.对于任意n∈N* ,
+
+…+
都是偶数
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com