【题目】有下列几个命题:①“若p,则q”的否命题是“若
,则
”;②p是q的必要条件,r是q的充分不必要条件,则p是r的必要不充分条件;③若“
”为真命题,则命题p,q中至多有一个为真命题;④过点
的直线和圆
相切的充要条件是直线斜率为
.其中为真命题的有( )
A.①②B.①②③C.①③④D.①②③④
科目:高中数学 来源: 题型:
【题目】已知动点
到定点
和到直线
的距离之比为
,设动点
的轨迹为曲线
,过点作垂直于
轴的直线与曲线
相交于两点,直线
与曲线
交于
两点,与
相交于一点(交点位于线段
上,且与
不重合).
(1)求曲线
的方程;
(2)当直线
与圆
相切时,四边形
的面积是否有最大值?若有,求出其最大值及对应的直线的方程;若没有,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某农户计划种植莴笋和西红柿,种植面积不超过
亩,投入资金不超过
万元,假设种植莴笋和西红柿的产量、成本和售价如下表:
年产量/亩 | 年种植成本/亩 | 每吨售价 | |
莴笋 | 5吨 | 1万元 | 0.5万元 |
西红柿 | 4.5吨 | 0.5万元 | 0.4万元 |
那么,该农户一年种植总利润(总利润=总销售收入-总种植成本)的最大值为____万元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】抛物线有光学性质,即由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出,反之亦然.如图所示,今有抛物线
,一光源在点
处,由其发出的光线沿平行于抛物线的对称轴的方向射向抛物线上的点
,反射后,又射向抛物线上的点
,再反射后又沿平行于抛物线的对称轴方向射出,途中遇到直线
上的
点,再反射后又射回点
.设
,
两点的坐标分别是
,
.
![]()
(1)证明:
;
(2)若四边形
是平行四边形,且点
的坐标为
.求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,随着网络的普及,数码产品早已走进千家万户的生活,为了节约资源,促进资源循环利用,折旧产品回收行业得到迅猛发展,电脑使用时间越长,回收价值越低,某二手电脑交易市场对2018年回收的折旧电脑交易前使用的时间进行了统计,得到如图所示的频率分布直方图,在如图对时间使用的分组中,将使用时间落入各组的频率视为概率.
![]()
(1)若在该市场随机选取1个2018年成交的二手电脑,求其使用时间在
上的概率;
(2)根据电脑交易市场往年的数据,得到如图所示的散点图及一些统计量的值,其中
(单位:年)表示折旧电脑的使用时间,
(单位:百元)表示相应的折旧电脑的平均交易价格.
![]()
由散点图判断,可采用
作为该交易市场折旧电脑平均交易价格与使用年限
的回归方程,若
,
,选用如下参考数据,求
关于
的回归方程,并预测在区间
(用时间组的区间中点值代表该组的值)上折旧电脑的价格.
|
|
|
|
|
|
5.5 | 8.5 | 1.9 | 301.4 | 79.75 | 385 |
附:参考公式:对于一组数据
,其回归直线
的斜率和截距的最小二乘估计分别为:
,
.参考数据:
,
,
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,设点
,
,
(其中
表示a、b中的较大数)为
、
两点的“切比雪夫距离”.
(1)若
,Q为直线
上动点,求P、Q两点“切比雪夫距离”的最小值;
(2)定点
,动点
满足![]()
,请求出P点所在的曲线所围成图形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校学生社团组织活动丰富,学生会为了解同学对社团活动的满意程度,随机选取了100位同学进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[40,50),[50,60),[60,70),…,[90,100]分成6组,制成如图所示频率分布直方图.
(1)求图中x的值;
(2)求这组数据的中位数;
(3)现从被调查的问卷满意度评分值在[60,80)的学生中按分层抽样的方法抽取5人进行座谈了解,再从这5人中随机抽取2人作主题发言,求抽取的2人恰在同一组的概率.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com