精英家教网 > 高中数学 > 题目详情
已知
a
=(sin(
π
6
x-
π
3
),2),
b
=(2,sin(
π
6
x+
π
3
)+2),f(x)=
a
b

(1)求函数y=f(x)的解析式;
(2)若y表示某海岸港口的深度(米),x表示一天内时间(小时);当水深不低于5米时,船才能驶入港口,求一天内船可以驶入或驶出港口的时间共有多少小时?
分析:(1)利用向量的数量积公式求出f(x),利用和、差角公式化简f(x).
(2)将实际问题转化为三角不等式,列出不等式,结合三角函数的图象解出不等式的解集.
解答:解:(1)f(x)=2sin(
π
6
x-
π
3
)+2sin(
π
6
x+
π
3
)+4

=2sin
π
6
xcos
π
3
-2cos
π
6
xsin
π
3
+2sin
π
6
xcos
π
3
+2cos
π
6
xsin
π
3
+4
=4sin
π
6
xcos
π
3
+4
=2sin
π
6
x+4,
∴f(x)=2sin
π
6
x+4.

(2)由题意,令sin
π
6
x+4≥5,∴sin
π
6
x≥
1
2

∴2kπ+
π
6
π
6
x≤2kπ+
5
6
π,(k∈Z),
∴12kπ+1≤x≤12k+5,(k∈Z),
又∵0≤x≤24,∴k=0时,1≤x≤5;k=1时,13≤x≤17,
∴从晚上1点至5点,或上午13点至17点,为所求时间,共8小时,
点评:本题考查向量的数量积公式、和差角公式、结合三角函数的图象及三角函数的单调性,周期性解三角不等式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知a=sin(-1),b=cos(-1),c=tan(-1),则a、b、c的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(sinθ,1)
b
=(1,cosθ)
c
=(0,3)
-
π
2
<θ<
π
2

(1)若(4
a
-
c
)∥
b
,求θ;
(2)求|
a
+
b
|
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题:
(1)若函数f(x)=lg(x+
x2+a
),为奇函数,则a=1;
(2)函数f(x)=|sinx|的周期T=π;
(3)已知
a
=(sinθ,
1+cosθ
),
b
=(1,
1-cosθ
)
,其中θ∈(π,
2
),则
a
b

(4)在△ABC中,
BA
=a,
AC
=b,若a•b<0,则△ABC是钝角三角形
( 5)O是△ABC所在平面上一定点,动点P满足:
OP
=
OA
+λ(
AB
sinC
+
AC
sinB
)
,λ∈(0,+∞),则直线AP一定通过△ABC的内心.
以上命题为真命题的是
(1)(2)(3)(5)
(1)(2)(3)(5)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(sin(
π
4
+2α),
6
6
),
b
=(sin(
π
4
-2α),-
6
6
)
α∈(
π
4
π
2
)
,且
a
b
,求
2
sin2α+2cos2α
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(sinθ,cosθ)
b
=(
3
,1)

(1)若
a
b
,求tanθ的值;
(2)若f(θ)=|
a
+
b
|
,△ABC的三条边分别为f(-
3
)、f(-
π
6
)、f(
π
3
),求△ABC的面积.

查看答案和解析>>

同步练习册答案