【题目】已知函数f(x)=
.
(1)设函数g(x)=f(x)﹣1,求函数g(x)的零点;
(2)若函数f(x1)=f(x2)=f(x3)=f(x4),且0<x1<x2<x3<x4≤10,求
的取值范围.
【答案】
(1)解:当0<x≤2时,由|log2x|=1解得x=2或
;
当2<x≤10时,由
解得x=10,
∴函数g(x)有3个零点,分别为x=2,
.
(2)解:设f(x1)=f(x2)=f(x3)=f(x4)=a,由题意可知函数f(x)的图象与直线y=a交于四个不同的点.
在同一坐标系内作出两个函数的图象:
![]()
结合图象,由题意可知,x3+x4=12;
由|log2x1|=|log2x2|知,﹣log2x1=log2x2,即x1x2=1.
若函数f(x)的图象与直线y=a图象始终有四个交点,则2<x3<4.
故 ![]()
因2<x3<4,所以,
.
所以,
的取值范围为(9,21)
【解析】(1)分类讨论,当0<x≤2时,由|log2x|=1;当2<x≤10时,由
,即可求函数g(x)的零点;(2)画出函数f(x)的图象,确定x1x2=1,x3+x4=12,2<x3<x4<10,由此可得则
的取值范围.
科目:高中数学 来源: 题型:
【题目】已知以点C(t,
)(t∈R,t≠0)为圆心的圆过原点O.
(1)设直线3x+y﹣4=0与圆C交于点M、N,若|OM|=|ON|,求圆C的方程;
(2)在(1)的条件下,设B(0,2),且P、Q分别是直线l:x+y+2=0和圆C上的动点,求|PQ|﹣|PB|的最大值及此时点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2017辽宁鞍山市最后一次模】如图所示,在三棱锥
中,侧面
,
是全等的直角三角形,
是公共的斜边且
,
,另一侧面
是正三角形.
![]()
(1)求证:
;
(2)若在线段
上存在一点
,使
与平面
成
角,试求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 【2017江西4月质检】如图,四棱锥
中,侧面
底面
,
,
,
,
,
,点
在棱
上,且
,点
在棱
上,且
平面
.
![]()
(1)求证:
平面
;
(2)求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】是否存在过点(﹣5,﹣4)的直线l,使它与两坐标轴围成的三角形的面积为5?若存在,求出直线l的方程(化成直线方程的一般式);若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2px(p>0)的焦点为F,若过点F且斜率为1的直线与抛物线相交于M,N两点,且|MN|=8.
(1)求抛物线C的方程;
(2)设直线l为抛物线C的切线,且l∥MN,P为l上一点,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4―4:坐标系与参数方程]
在直角坐标系xOy中,曲线C的参数方程为
(θ为参数),直线l的参数方程为
.
(1)若a=1,求C与l的交点坐标;
(2)若C上的点到l的距离的最大值为
,求a.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC的内角A,B,C的对边分别为a,b,c,且b=acosc+
csinA.
(1)求角A的大小;
(2)当a=3时,求△ABC周长的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com