精英家教网 > 高中数学 > 题目详情
已知椭圆C1=1(a>b>0)和圆C2:x2+y2=r2(r>0)都过点P(-1,0),且椭圆C1离心率为,过点P作斜率为k1,k2的直线分别交椭圆C1、圆C2于点A、B、C、D(如图),k1=2k2
(1)求椭圆C1和圆C2的方程;
(2)求证:直线BC恒过定点.

【答案】分析:(1)直接把定点代入圆的方程求圆的半径,利用椭圆过定点得到a的值,代入离心率后求得c的值,结合b2=a2-c2求得b的值,则圆与椭圆的方程可求;
(2)设出直线AB和CD的方程,分别和圆与椭圆联立后求出A,B,C,D的坐标,求出BC的斜率(用k2)表示,由点斜式写出直线BC的方程后可得直线BC恒过定点.
解答:(1)解:由圆C2:x2+y2=r2(r>0)过点P(-1,0),得到r2=1,
所以圆C2的方程为x2+y2=1.
由椭圆C1离心率为=
由椭圆C1=1(a>b>0)过点P(-1,0),得
所以a=1,代入,得c=
所以
所以椭圆C1的方程为x2+2y2=1;
(2)证明:由题意可设直线AB的方程为y=k1(x+1),直线CD的方程为y=k2(x+1).


同理可得:
所以,因为k1=2k2,所以
所以直线BC的方程为
,恒过定点(1,0).
点评:本题考查了圆与椭圆的标准方程,考查了直线与圆锥曲线的关系,直线与圆锥曲线的关系问题,往往需要涉及繁杂的计算,这就需要学生有较强的运算能力,属难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C1=1,抛物线C2:(y-m)2=2px(p>0),且C1C2的公共弦AB过椭圆C1的右焦点.

(1)当ABx轴时,求mp的值,并判断抛物线C2的焦点是否在直线AB上;

(2)若p=且抛物线C2的焦点在直线AB上,求m的值及直线AB的方程.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省宁波市慈溪中学高三(上)第一次月考数学试卷(文科)(解析版) 题型:选择题

已知椭圆C1=1 (a>b>0)与双曲线C2:x2-=1 有公共的焦点,C2的一条渐近线与以C1的长轴为直径的圆相交于A,B两点.若C1恰好将线段AB三等分,则( )
A.a2=
B.a2=3
C.b2=
D.b2=2

查看答案和解析>>

科目:高中数学 来源:2011-2012学年辽宁省本溪一中、庄河高中联考高三(上)期末数学试卷(理科)(解析版) 题型:解答题

已知椭圆C1+=1(a>b>0)的长轴长为4,离心率为,F1、F2分别为其左右焦点.一动圆过点F2,且与直线x=-1相切.
(Ⅰ)(ⅰ)求椭圆C1的方程; (ⅱ)求动圆圆心C轨迹的方程;
(Ⅱ)在曲线上C有两点M、N,椭圆C1上有两点P、Q,满足MF2共线,共线,且=0,求四边形PMQN面积的最小值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年吉林省长春十一高高二(下)期初数学试卷(理科)(解析版) 题型:解答题

已知椭圆C1=1(a>b>0)的左、右焦点分别为F1、F2,其中F2也是抛物线C2:y2=4x的焦点,M是C1与C2在第一象限的交点,且
(I)求椭圆C1的方程;   
(Ⅱ)已知菱形ABCD的顶点A、C在椭圆C1上,顶点B、D在直线7x-7y+1=0上,求直线AC的方程.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省中山一中等六校联考高三(上)12月月考数学试卷(理科)(解析版) 题型:解答题

已知椭圆C1+=1(a>b>0)的离心率为,直线l:x-y+=0与椭圆C1相切.
(1)求椭圆C1的方程;
(2)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直与椭圆的长轴,动直线l2垂直于直线l1于点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;
(3)若A(x1,2),B(x2,y2),C(x,y)是C2上不同的点,且AB⊥BC,求实数y的取值范围.

查看答案和解析>>

同步练习册答案