如图,三棱柱ABC
A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.![]()
(1)证明:AB⊥A1C;
(2)若AB=CB=2,A1C=
,求三棱柱ABC
A1B1C1的体积.
(1)见解析 (2)3
解析(1)证明:取AB的中点O,连接OC,OA1,A1B.![]()
因为CA=CB,所以OC⊥AB.
由于AB=AA1,∠BAA1=60°,
故△AA1B为等边三角形,
所以OA1⊥AB.
因为OC∩OA1=O,
所以AB⊥平面OA1C.
又A1C?平面OA1C,故AB⊥A1C.
(2)解:由题设知△ABC与△AA1B都是边长为2的等边三角形,所以OC=OA1=
.
又A1C=
,则A1C2=OC2+O
,故OA1⊥OC.
因为OC∩AB=O,所以OA1⊥平面ABC,OA1为三棱柱ABC
A1B1C1的高.
又△ABC的面积S△ABC=
,故三棱柱ABC
A1B1C1的体积V=S△ABC×OA1=3.
科目:高中数学 来源: 题型:解答题
在如图所示的多面体中,已知正三棱柱ABCA1B1C1的所有棱长均为2,四边形ABDC是菱形.![]()
(1)求证:平面ADC1⊥平面BCC1B1;
(2)求该多面体的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
一个几何体的三视图如下图所示,已知正(主)视图是底边长为1的平行四边形,侧(左)视图是一个长为
,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.![]()
(1)求该几何体的体积V;
(2)求该几何体的表面积S.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝.再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).![]()
(1)当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米).
(2)若要制作一个如图放置的、底面半径为0.3米的灯笼,请作出灯笼的三视图(作图时,不需考虑骨架等因素).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
一个几何体是由圆柱
和三棱锥
组合而成,点
、
、
在圆
的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图4所示,其中
,
,
,
.![]()
(1)求证:
;
(2)求三棱锥
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,在四棱锥P-ABCD中,△PBC为正三角形,PA⊥底面ABCD,其三视图如图所示,俯视图是直角梯形.![]()
(1)求正视图的面积;
(2)求四棱锥P-ABCD的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com