【题目】【2015高考天津,文20】已知函数![]()
(I)求
的单调区间;
(II)设曲线
与
轴正半轴的交点为P,曲线在点P处的切线方程为
,求证:对于任意的正实数
,都有
;
(III)若方程
有两个正实数根
且
,求证:
.
【答案】(I)
的单调递增区间是
,单调递减区间是
;(II)见试题解析;(III)见试题解析.
【解析】
(I)由
,可得
的单调递增区间是
,单调递减区间是
;(II)
,
,证明
在
单调递增,在
单调递减,所以对任意的实数x,
,对于任意的正实数
,都有
;(III)设方程
的根为
,可得
,由
在
单调递减,得
,所以
.设曲线
在原点处的切线为
方程
的根为
,可得
,由
在在
单调递增,且
,可得
所以
.
试题解析:(I)由
,可得
,当
,即
时,函数
单调递增;当
,即
时,函数
单调递减.所以函数
的单调递增区间是
,单调递减区间是
.
(II)设
,则
,
曲线
在点P处的切线方程为
,即
,令
即
则
.
由于
在
单调递减,故
在
单调递减,又因为
,所以当
时,
,所以当
时,
,所以
在
单调递增,在
单调递减,所以对任意的实数x,
,对于任意的正实数
,都有
.
(III)由(II)知
,设方程
的根为
,可得
,因为
在
单调递减,又由(II)知
,所以
.类似的,设曲线
在原点处的切线为
可得
,对任意的
,有
即
.设方程
的根为
,可得
,因为
在
单调递增,且
,因此,
所以
.
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)某公司为了解广告投入对销售收益的影响,在若干地区各投入
万元广告费用,并将各地的销售收益(单位:万元)绘制成如图所示的频率分布直方图.由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从
开始计数的.
![]()
![]()
(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度;
(Ⅱ)该公司按照类似的研究方法,测得另外一些数据,并整理得到上表:表中的数据显示
与
之间存在线性相关关系,求
关于
的回归方程;
(Ⅲ)若广告投入
万元时,实际销售收益为
.
万元,求残差
.
附:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有甲、乙两种商品,经营销售这两种商品所得的利润依次为M万元和N万元,它们与投入资金
万元的关系可由经验公式给出:M=
,N=
(
≥1).今有8万元资金投入经营甲、乙两种商品,且乙商品至少要求投资1万元,
设投入乙种商品的资金为
万元,总利润
;
(2)为获得最大利润,对甲、乙两种商品的资金投入分别是多少?共能获得多大利润?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四边形
为直角梯形,
,
,
,
,
为
中点,
,
与
交于点
,沿
将四边形
折起,连接
.
![]()
(1)求证:
平面
;
(2)若平面
平面
.
(I)求二面角
的平面角的大小;
(II)线段
上是否存在点
,使
平面
,若存在,求出
的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2016·哈尔滨高二检测)如图,下列四个几何体中,它们的三视图(正视图、俯视图、侧视图)有且仅有两个相同,而另一个不同的两个几何体是________.
![]()
(1)棱长为2的正方体 (2)底面直径和高均为2的圆柱
![]()
(3)底面直径和高
均为2的圆锥
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】私家车的尾气排放是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力.为此,很多城市实施了机动车车尾号限行,我市某报社为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:
(Ⅰ)完成被调查人员的频率分布直方图;
![]()
(Ⅱ)若从年龄在[15,25),[25,35)的被调查者中各随机选取2人进行追踪调查,求恰有2人不赞成的概率;
![]()
(Ⅲ)在(Ⅱ)的条件下,再记选中的4人中不赞成“车辆限行”的人数为
,求随机变量
的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com