【题目】某景区欲建造同一水平面上的两条圆形景观步道
、
(宽度忽略不计),已知
,
(单位:米),要求圆
与
、
分别相切于点
、
,
与
、
分别相切于点
、
,且
.
(1)若
,求圆
、圆
的半径(结果精确到
米);
(2)若景观步道
、
的造价分别为每米
千元、
千元,如何设计圆
、圆
的大小,使总造价最低?最低总造价为多少(结果精确到
千元)?
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
(
为参数),将曲线
上的所有点的横坐标保持不变,纵坐标缩短为原来的
后得到曲线
;以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)求曲线
和直线
的直角坐标方程;
(2)已知
,设直线
与曲线
交于不同的
、
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
分别是双曲线
的左、右焦点,过
斜率为
的直线
交双曲线的左、右两支分别于
两点,过
且与
垂直的直线
交双曲线的左、右两支分别于
两点.
(1)求
的取值范围;
(2)求四边形
面积的最小值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数
满足:对于任意正数
,都有
,且
,则称函数
为“L函数”.
(1)试判断函数
与
是否是“L函数”;
(2)若函数
为“L函数”,求实数a的取值范围;
(3)若函数
为“L函数”,且
,求证:对任意
,都有
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了提高学生的身体素质,某校高一、高二两个年级共336名学生同时参与了“我运动,我健康,我快乐”的跳绳、踢毽等系列体育健身活动.为了了解学生的运动状况,采用分层抽样的方法从高一、高二两个年级的学生中分别抽取7名和5名学生进行测试.下表是高二年级的5名学生的测试数据(单位:个/分钟):
![]()
(1)求高一、高二两个年级各有多少人?
(2)设某学生跳绳
个/分钟,踢毽
个/分钟.当
,且
时,称该学生为“运动达人”.
①从高二年级的学生中任选一人,试估计该学生为“运动达人”的概率;
②从高二年级抽出的上述5名学生中,随机抽取3人,求抽取的3名学生中为“运动达人”的人数
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】目前,中国有三分之二的城市面临“垃圾围城”的窘境. 我国的垃圾处理多采用填埋的方式,占用上万亩土地,并且严重污染环境. 垃圾分类把不易降解的物质分出来,减轻了土地的严重侵蚀,减少了土地流失. 2020年5月1日起,北京市将实行生活垃圾分类,分类标准为厨余垃圾、可回收物、有害垃圾和其它垃圾四类 .生活垃圾中有30%~40%可以回收利用,分出可回收垃圾既环保,又节约资源. 如:回收利用1吨废纸可再造出0.8吨好纸,可以挽救17棵大树,少用纯碱240千克,降低造纸的污染排放75%,节省造纸能源消耗40%~50%.
现调查了北京市5个小区12月份的生活垃圾投放情况,其中可回收物中废纸和塑料品的投放量如下表:
|
|
|
|
| |
废纸投放量(吨) | 5 | 5.1 | 5.2 | 4.8 | 4.9 |
塑料品投放量(吨) | 3.5 | 3.6 | 3.7 | 3.4 | 3.3 |
(Ⅰ)从
这5个小区中任取1个小区,求该小区12月份的可回收物中,废纸投放量超过5吨且塑料品投放量超过3.5吨的概率;
(Ⅱ)从
这5个小区中任取2个小区,记
为12月份投放的废纸可再造好纸超过4吨的小区个数,求
的分布列及期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)求函数
的定义域D,并判断
的奇偶性;
(2)如果当
时,
的值域是
,求a的值;
(3)对任意的m,
,是否存在
,使得
,若存在,求出t,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,
平面PCD,
,
,
,E为AD的中点,AC与BE相交于点O.
![]()
(1)证明:
平面ABCD.
(2)求直线BC与平面PBD所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查一款手机的使用时间,研究人员对该款手机进行了相应的测试,将得到的数据统计如下图所示:
![]()
并对不同年龄层的市民对这款手机的购买意愿作出调查,得到的数据如下表所示:
愿意购买该款手机 | 不愿意购买该款手机 | 总计 | |
40岁以下 | 600 | ||
40岁以上 | 800 | 1000 | |
总计 | 1200 |
(1)根据图中的数据,试估计该款手机的平均使用时间;
(2)请将表格中的数据补充完整,并根据表中数据,判断是否有99.9%的把握认为“愿意购买该款手机”与“市民的年龄”有关.
参考公式:
,其中
.
参考数据:
| 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com