精英家教网 > 高中数学 > 题目详情
如图,三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点,BB1⊥平面ABC
(Ⅰ)求证:AB1⊥平面A1BD;
(Ⅱ)求二面角A-A1D-B的余弦值;
(Ⅲ)求点C到平面A1BD的距离.
分析:(I)取BC中点O,连接AO. 可由面面垂直的性质得到AO⊥平面B1C1CB,令B1C1中点为O1,以0为原点,OB,OO1,OA的方向为x,y,z轴的正方向建立空间直角坐标系,分别求出向量
AB1
BD
BA1
的坐标,用向量法可得
AB1
BD
AB1
BA1
,进而由线面垂直的判定定理得到AB1⊥平面A1BD;
(II)求出平面AA1D的法向量
m
,结合(I)中结论
AB1
为平面A1BD的法向量,代入向量夹角公式,可得二面角A-A1D-B的余弦值;
(Ⅲ)由(I)中
AB1
为平面A1BD的法向量,求出向量
BC
的坐标,代入d=
|
BC
AB1
|
|
AB1
|
,可得点C到平面A1BD的距离.
解答:解:(I)取BC中点O,连接AO. 
∴△ABC为正三角形,
∴AO⊥BC.
∵在正三棱柱ABC-A1B1C1中,平面ABC⊥平面B1C1CB,
∴AO⊥平面B1C1CB,
取B1C1中点O1,以0为原点,OB,OO1,OA的方向为x,y,z轴的正方向建立空间直角坐标系,
则B(1,0,0),D(-1,1,0),A1(0,2,
3
),A(0,0,
3
),B1(1,2,0),
AB1
=(1,2,-
3
),
BD
=(-2,1,0),
BA1
=(-1,2,
3
).
AB1
BD
=-2+2=0,
AB1
BA1
=-1+4-3=0
AB1
BD
AB1
BA1

∴AB1⊥平面A1BD;
(Ⅱ)设平面AA1D的法向量为
m
=(x,y,z).
AD
=(-1,1,-
3
),
AA1
=(0,2,0).
m
AD
m
AA1

m
AD
=0
m
AA1
=0
,即
-x+y-
3
z=0
2y=0

令z=1得
m
=(-
3
,0,1)
由(I)知AB1⊥平面A1BD,
AB1
为平面A1BD的法向量.
cos<
n
AB1
>=
-
3
+0-
3
2•2
2
=-
6
4

∴二面角A-A1D-B的余弦值为
6
4

(3)由(2),
AB1
为平面A1BD的法向量,
又∵
BC
=(-2,0,0),
AB1
=(1,2,-
3
),.
∴点C到平面A1BD的距离d=
|
BC
AB1
|
|
AB1
|
=
|-2|
2
2
=
2
2
点评:本题考查的知识点是二面角的平面角及其求法,直线与平面垂直的判定,点到平面的距离,其中建立空间坐标系,将空间线面关系,夹角问题转化为向量问题是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1中,∠ACB=90°,CC1⊥平面ABC,AC=BC=CC1=1,则直线A1C1和平面ACB1的距离等于
 
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB⊥AC,D、E分别为AA1、B1C的中点,AB=AC.
(1)证明:DE⊥平面BCC1
(2)设B1C与平面BCD所成的角的大小为30°,求二面角A-BD-C.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黑龙江)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=
12
AA1,D是棱AA1的中点.
(Ⅰ)证明:平面BDC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1的底面ABC为正三角形,侧棱AA1⊥平面ABC,D是BC中点,且AA1=AB
(1)证明:AD⊥BC1
(2)证明:A1C∥平面AB1D.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•大连二模)如图,三棱柱ABC-A′B′C′,cc′=
2
,BC′=
2
,BC=2,△ABC是以BC为底边的等腰三角形,平面ABC⊥平面BCC′B′,E、F分别为棱AB、CC′的中点.
(I)求证:EF∥平面A′BC′;
(Ⅱ)若AC≤
2
,且EF与平面ACC'A'所成的角的余弦为
7
3
,求二面角C-AA'-B的大小.

查看答案和解析>>

同步练习册答案