精英家教网 > 高中数学 > 题目详情
已知等差数列{an}中,公差d>0,其前n项和为Sn,且满足a2•a3=45,a1+a4=14.
(1)求数列{an}的通项公式;
(2)通过构造一个新的数列{bn},是否存在一个非零常数c,使{bn}也为等差数列;
(3)求的最大值.
【答案】分析:(1)利用通项公式,建立关于a1,d 的方程组,并解出a1,d 可求通项公式.
(2)写出bn的表达式,根据等差数列通项公式特点:关于n的一次函数形式,确定是否存在.
(3)研究f(n)的函数性质,结合分式形式,考虑用基本不等式法求最值.
解答:解:(1)∵等差数列{an}中,公差d>0,

(2)=
,即得bn=2n,数列{bn}为等差数列,
∴存在一个非零常数,使{bn}也为等差数列.
(3)

∵n∈N+
∴n=45时,有最大值
点评:本题考查等差数列的定义,通项公式,数列的函数性质,考查分析解决问题、计算的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案