精英家教网 > 高中数学 > 题目详情
设函数f (x)=log2( ax-bx),且f(1)=1,f(2)=log212
(1)求a,b的值.
(2)当x∈[1,2]时,求f(x)的最大值.
(3)p为何值时,函数g(x)=ax-bx+p与x轴有两个交点.
分析:(1)由已知f(1)=1,f(2)=log212代入到f(x)中求得a、b的值即可;
(2)利用(1)求出f(x),利用换元法求得最小值即可;
(3)令g(x)=4x-2x+p=0,则4x-2x+p=0有两个不同解.利用换元法:令t=2x则t>0故t2-t+p=0有两个不同正根转化为二次方程的问题解决即可.
解答:解:(1)由题意,列方程组
log 2(a -b)=1
log 2(a2-b2)=log 212

求得a=4,b=2..(4分)
(2)由(1)知f(x)=log2(4x-2x)=log 2[ (2x-
1
2
 2-
1
4
]

∵1≤x≤2∴2≤2x≤4(2分)
故t=(2x-
1
2
) 2-
1
4
在[1,2]上单调递减
∴f(x)的最大值=f(2)=log212(2分)
(3)令g(x)=4x-2x+p=0,则4x-2x+p=0有两个不同解.
令t=2x则t>0故t2-t+p=0有两个不同正根(2分)
即△=1-4p>0且p>0,(2分)
解得0<p<1/4.(2分)
点评:考查学生利用待定系数法求函数解析式的能力,理解函数极值及其几何意义的能力,解答关键是利用换元法进行转化的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)的定义域为D,若存在非零数l使得对于任意x∈M(M⊆D)有x+l∈D且f(x+l)≥f(x),则称f(x)为M上的l高调函数.现给出下列命题:
①函数f(x)=(
12
)
x
为R上的1高调函数;
②函数f(x)=sin2x为R上的π高调函数
③如果定义域为[1,+∞)的函数f(x)=x2为[-1,+∞)上m高调函数,那么实数m的取值范围是[2,+∞)其中正确的命题是
 
.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

现有下面四个命题:
①曲线y=-x2+2x+4在点(1,5)处的切线的倾斜角为45°;
②已知直线l,m,平面α,β,若l⊥α,m?β,l⊥m,则α∥β;
③设函数f(x)=Asin(ωx+φ),(A>0,ω>0),若f(1)=0,
则f(x+1)一定是奇函数;
④如果点P到点A(
1
2
,0),B(
1
2
,2)
及直线x=-
1
2
的距离相等,那么满足条件的点P有且只有1个.
其中正确命题的序号是
 
.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•滨州一模)设函数f(x)=p(x-
1x
)-2lnx,g(x)=x2
(I)若直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于点(1,0),求实数p的值;
(II)若f(x)在其定义域内为单调函数,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3+4x+5的图象在x=1处的切线为l,则圆2x2+2y2-8x-8y+15=0上的点到直线l的最短距离为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选讲选做题)设函数f(x)=|x-a|-2,若不等式|f(x)|<1的解集为(-2,0)∪(2,4),则实数a=
1
1

B.(几何证明选讲选做题)如右图,已知PB是圆O的切线,A是切点,D是弧AC上一点,若∠BAC=70°,则∠ADC=
110°
110°

C.(坐标系与参数方程)极坐标系中,直线l的极坐标方程为ρsin(θ+
π
6
)=2,则极点在直线l上的射影的极坐标是
(2,
π
3
(2,
π
3

查看答案和解析>>

同步练习册答案