精英家教网 > 高中数学 > 题目详情
选修4-1:《几何证明选讲》
已知:如图,⊙O为△ABC的外接圆,直线l为⊙O的切线,切点为B,直线ADl,交BC于D、交⊙O于E,F为AC上一点,且∠EDC=∠FDC.求证:
(Ⅰ)AB2=BD•BC;
(Ⅱ)点A、B、D、F共圆.
精英家教网

精英家教网
证明:(I)∵直线l为⊙O的切线,∴∠1=∠ACB.
∵ADl,∴∠1=∠DAB.
∴∠ACB=∠DAB,
又∵∠ABC=∠DBA,
∴△ABC△DAB.
AB
DB
=
BC
AB

∴AB2=BD•BC.
(Ⅱ)由(Ⅰ)可知∠BAC=∠ADB.
∵∠EDC=∠FDC,∠EDC=∠ADB,
∴∠BAC=∠FDC.∴∠BAC+∠FDB=∠FDC+∠FDB=180°.
∴点A、B、D、F共圆.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在A、B、C、D四小题中只能选做2题,每小题10分,共计20分,请在答题纸指定区域内作答,解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:(几何证明选讲)
如图,从O外一点P作圆O的两条切线,切点分别为A,B,
AB与OP交于点M,设CD为过点M且不过圆心O的一条弦,
求证:O,C,P,D四点共圆.
B.选修4-2:(矩阵与变换)
已知二阶矩阵M有特征值λ=3及对应的一个特征向量e1=[
 
1
1
],并且矩阵M对应的变换将点(-1,2)变换成(9,15),求矩阵M.
C.选修4-4:(坐标系与参数方程)
在极坐标系中,曲线C的极坐标方程为p=2
2
sin(θ-
π
4
),以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=1+
4
5
t
y=-1-
3
5
t
(t为参数),求直线l被曲线C所截得的弦长.
D.选修4-5(不等式选讲)
已知实数x,y,z满足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•兰州一模)选修4-1:《几何证明选讲》
已知:如图,⊙O为△ABC的外接圆,直线l为⊙O的切线,切点为B,直线AD∥l,交BC于D、交⊙O于E,F为AC上一点,且∠EDC=∠FDC.求证:
(Ⅰ)AB2=BD•BC;
(Ⅱ)点A、B、D、F共圆.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•兰州一模)选修4-1:《几何证明选讲》
已知:如图,eO为△ABC的外接圆,直线l为eO的切线,切点为B,直线AD∥l,交BC于D、交eO于E,F为AC上一点,且∠EDC=∠FDC.求证:
(Ⅰ)AB2=BD.BC;
(Ⅱ)点A、B、D、F共圆.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省南京市四区县高三(上)联考数学试卷(解析版) 题型:解答题

在A、B、C、D四小题中只能选做2题,每小题10分,共计20分,请在答题纸指定区域内作答,解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:(几何证明选讲)
如图,从O外一点P作圆O的两条切线,切点分别为A,B,
AB与OP交于点M,设CD为过点M且不过圆心O的一条弦,
求证:O,C,P,D四点共圆.
B.选修4-2:(矩阵与变换)
已知二阶矩阵M有特征值λ=3及对应的一个特征向量e1=[],并且矩阵M对应的变换将点(-1,2)变换成(9,15),求矩阵M.
C.选修4-4:(坐标系与参数方程)
在极坐标系中,曲线C的极坐标方程为p=2sin(),以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数),求直线l被曲线C所截得的弦长.
D.选修4-5(不等式选讲)
已知实数x,y,z满足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

科目:高中数学 来源:2013年甘肃省兰州市高考数学一模试卷(文科)(解析版) 题型:填空题

选修4-1:《几何证明选讲》
已知:如图,eO为△ABC的外接圆,直线l为eO的切线,切点为B,直线AD∥l,交BC于D、交eO于E,F为AC上一点,且∠EDC=∠FDC.求证:
(Ⅰ)AB2=BD.BC;
(Ⅱ)点A、B、D、F共圆.

查看答案和解析>>

同步练习册答案