精英家教网 > 高中数学 > 题目详情
(几何证明选讲)
如图,在圆O中,直径AB与弦CD垂直,垂足为E,EF⊥DB,垂足为F,若AB=6,AE=1,则DF•DB=
5
5
分析:利用相交弦定理得出DE=
5
,再利用△DFE∽△DEB,得出DF•DB=DE2=5.
解答:解:∵AB=6,AE=1,∴EB=5,OE=2.
连接AD,则△AED∽△DEB,∴
AE
DE
=
DE
BE
,∴DE=
5

又△DFE∽△DEB,∴
DF
DE
=
DE
DB

即DF•DB=DE2=5.
故答案为:5
点评:此题考查了垂径定理、直角三角形的性质.此题比较简单,解题的关键是注意数形结合思想的应用,注意掌握垂径定理与直角三角形中的射影定理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(选修4-1:几何证明选讲)
如图,△ABC是⊙O的内接三角形,PA是⊙O的切线,PB交AC于点E,交⊙O于点D,若PE=PA,∠ABC=60°,PD=1,BD=8,求线段BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(几何证明选讲)如图,AB、CD是圆O的两条弦,且AB是线段CD的中垂线,已知AB=10,CD=8,则线段AC的长度为
4
5
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)几何证明选讲:如图,CB是⊙O的直径,AP是⊙O的切线,A为切点,AP与CB的延长线交于点P,若PA=8,PB=4,求AC的长度.
(2)坐标系与参数方程:在极坐标系Ox中,已知曲线C1:ρcos(θ+
π
4
)
=
2
2
与曲线C2;ρ=1相交于A、B两点,求线段AB的长度.
(3)不等式选讲:解关于x的不等式|x-1|+a-2≤0(a∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-1:几何证明选讲.
如图,AB是⊙O的一条切线,切点为B,ADE、CFD、CGE都是⊙O的割线,已知AC=AB.证明:
(1)AD•AE=AC2
(2)FG∥AC.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)(几何证明选讲)如图,AB是半圆O的直径,点C在半圆上,CD⊥AB,垂足为D,且AD=5DB,设∠COD=θ,则tanθ的值为
5
2
5
2

(2)(坐标系与参数方程)圆O1和圆O2的极坐标方程分别为ρ=4cosθ,ρ=-4sinθ,则经过两圆圆心的直线的直角坐标方程为
x-y-2=0
x-y-2=0

(3)(不等式选讲)若不等式|3x-b|<4的解集中的整数有且仅有0,1,2,则b的取值范围是
(2,4)
(2,4)

查看答案和解析>>

同步练习册答案