精英家教网 > 高中数学 > 题目详情
(2012•安徽模拟)已知函数:y=anx2(an≠0,n∈N*)的图象在x=1处的切线斜率为2an-1+1(n≥2,n∈N*),且当n=1时其图象过点(2,8),则a7的值为(  )
分析:求导函数,利用y=anx2(an≠0,n∈N*)的图象在x=1处的切线斜率为2an-1+1,可得数列相邻项的关系,进而利用等差数列的通项公式可求a7的值.
解答:解:求导函数,可得y′=2anx,
∵函数:y=anx2(an≠0,n∈N*)的图象在x=1处的切线斜率为2an-1+1(n≥2,n∈N*),
∴2an=2an-1+1(n≥2,n∈N*),
∴an-an-1=
1
2
(n≥2,n∈N*),
∵当n=1时其图象过点(2,8),
∴8=4a1
∴a1=2
∴数列{an}是以2为首项,
1
2
为公差的等差数列
∴a7=a1+6×
1
2
=5
故选C.
点评:本题考查导数知识的运用,考查等差数列,解题的关键是确定数列为等差数列.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•安徽模拟)在复平面内,复数z=
1+i
i-2
对应的点位于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)定义在R上的奇函数f(x)满足:x≤0时f(x)=ax+b(a>0且a≠1),f(1)=
1
2
,则f(2)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)(理)若变量x,y满足约束条件
x+y-3≤0
x-y+1≥0
y≥1
,则z=|y-2x|的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)下列说法不正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)已知f(x)=2
3
sinx+
sin2x
sinx

(1)求f(x)的最大值,及当取最大值时x的取值集合.
(2)在三角形ABC中,a,b,c分别是角A,B,C所对的边,对定义域内任意x,有f(x)≤f(A),若a=
3
,求
AB
AC
的最大值.

查看答案和解析>>

同步练习册答案