精英家教网 > 高中数学 > 题目详情
已知a,b,c分别是△ABC的三个内角A,B,C的对边,
2b-c
a
=
cosC
cosA

(1)求A的大小;
(2)当a=
3
时,求b2+c2的取值范围.
分析:(1)已知等式利用正弦定理化简,整理后求出cosA的值,即可确定出A得度数;
(2)利用正弦定理列出关系式,表示出b与c,代入所求式子,整理后利用正弦函数的值域即可确定出范围.
解答:解:(1)△ABC中,
2b-c
a
=
cosC
cosA
,由正弦定理变形得:
2sinB-sinC
sinA
=
cosC
cosA

即2sinBcosA=sinAcosC+sinCcosA,
整理得:2sinBcosA=sin(A+C)=sinB,
∵sinB≠0,∴cosA=
1
2

则A=
π
3

(2)由正弦定理及a=
3
,sinA=
3
2
a
sinA
=
b
sinB
=
c
sinC
=
3
3
2
=2,
得:b=2sinB,c=2sinC,
则b2+c2=4sin2B+4sin2C
=2(1-cos2B+1-cos2C)
=2[2-cos2B-cos2(120°-B)]
=2[2-cos2B-cos(240°-2B)]
=2(2-
1
2
cos2B+
3
2
sinB)
=4+2sin(2B-30°),
∵0<B<120°,即-30°<2B-30°<210°,
∴-
1
2
<sin(2B-30°)≤1,
则3<b2+c2≤6.
点评:此题考查了正弦定理,两角和与差的正弦函数公式,正弦函数的定义域与值域,熟练掌握正弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a、b、c分别是△ABC三个内角A、B、C的对边.
(1)若b2=ac,求角B的范围.
(2)若acosA=bcosB,试判断△ABC的形状,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若a=1,b=
3
,A+C=2B,则sinC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a、b、c分别是△ABC的三个内角A、B、C所对的边,若
cosB
cosC
=-
b
2a+c
,则B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别是△ABC中角A,B,C的对边,且sin2A+sin2C-sin2B=sinAsinC.
 (1)求角B的大小;
 (2)若c=3a,求tanA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别是△ABC的三个内角A,B,C的对边,且满足2asinB-
3
b=0.
(Ⅰ)求角A的大小;
(Ⅱ)当A为锐角时,求函数y=
3
sinB+sin(C-
π
6
)的最大值.

查看答案和解析>>

同步练习册答案