【题目】如图,
是边长为2的正方形,
平面
,且
.
![]()
(Ⅰ)求证:平面
平面
;
(Ⅱ)线段
上是否存在一点
,使二而角
等于45°?若存在,请找出点
的位置;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标点xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρsinθ=6.
(1)A为曲线C1上的动点,点M在线段OA上,且满足|OM||OA|=36,求点M的轨迹C2的直角坐标方程;
(2)点E的极坐标为(4,
),点F在曲线C2上,求△OEF面积的最大值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的前
项和为
,且满足
,
,设
,
.
(Ⅰ)求证:数列
是等比数列;
(Ⅱ)若
,
,求实数
的最小值;
(Ⅲ)当
时,给出一个新数列
,其中
,设这个新数列的前
项和为
,若
可以写成
(
,
且
,
)的形式,则称
为“指数型和”.问
中的项是否存在“指数型和”,若存在,求出所有“指数型和”;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为:
(
为参数),以平面直角坐标系的原点
为极点,
轴的非负半轴为极轴建立极坐标系,将曲线
绕极点顺时针旋转
后得到曲线的曲线记为
.
(1)求曲线
和
的极坐标方程;
(2)设
和
的交点为
,
,求
的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为响应党中央“扶贫攻坚”的号召,某单位指导一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2017年种植的一批试验紫甘薯在温度升高时6组死亡的株数:
![]()
经计算:
,
,
,
,
,
,
,其中
分别为试验数据中的温度和死亡株数,
.
(1)若用线性回归模型,求
关于
的回归方程
(结果精确到
);
(2)若用非线性回归模型求得
关于
的回归方程为
,且相关指数为
.
(i)试与(1)中的回归模型相比,用
说明哪种模型的拟合效果更好;
(ii)用拟合效果好的模型预测温度为
时该批紫甘薯死亡株数(结果取整数).
附:对于一组数据
,
,……,
,其回归直线
的斜率和截距的最小二乘估计分别为:
;相关指数为:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代著名数学家刘徽的杰作《九章算术注》是中国最宝贵的数学遗产之一,书中记载了他计算圆周率所用的方法.先作一个半径为1的单位圆,然后做其内接正六边形,在此基础上做出内接正
边形,这样正多边形的边逐渐逼近圆周,从而得到圆周率,这种方法称为“刘徽割圆术”.现设单位圆
的内接正
边形的一边为
,点
为劣弧
的中点,则
是内接正
边形的一边,现记
,
,则( )
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于某种类型的口服药,口服
小时后,由消化系统进入血液中药物浓度
(单位)与时间
小时的关系为
,其中
,
为常数,对于某一种药物
,
,
.
(1)口服药物后______小时血液中药物浓度最高;
(2)这种药物服药
小时后血液中药物浓度如下表
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 0.9545 | 0.9304 | 0.6932 | 0.4680 | 0.3010 | 0.1892 | 0.1163 | 0.072 |
一个病人上午8:00第一次服药,要使得病人血液中药物浓度保持在0.5个单位以上,第三次服药时间是______(时间以整点为准)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
,且
为常数).
(1)若函数
的图象在
处的切线的斜率为
(
为自然对数的底数),求
的值;
(2)若函数
在区间
上单调递增,求
的取值范围;
(3)已知
,且
.求证:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com