精英家教网 > 高中数学 > 题目详情
定义在R上的函数f(x)满足f(4-x)=-f(x),当x>2时,f(x)单调递增,如果x1+x2<4,且(x1-2)(x2-2)<0,则f(x1)+f(x2)的值(  )
分析:不妨设x1<x2,根据(x1-2)(x2-2)<0,可得x1<2,x2>2,再根据x1+x2<4,可得x2>4-x1>2,利用函数的单调性,可以得到f(4-x1)与f(x2)的大小关系,再利用f(4-x)=-f(x),赋值x=x1,f(4-x1)转化为f(x1),从而得到结论.
解答:解:∵(x1-2)(x2-2)<0,
∴不妨设x1<x2
∴x1<2,x2>2,
∵x1+x2<4,
∴4-x1>x2>2,
∵当x>2时,f(x)单调递增,
∴f(4-x1)>f(x2),
又∵f(4-x)=-f(x),
令x=x1,可得-f(x1)=f(4-x1),
∴-f(x1)>f(x2),
∴f(x1)+f(x2)>0.
即f(x1)+f(x2)的值恒小于0.
故选A.
点评:本题考查了抽象函数及其应用,考查根据抽象函数的性质进行灵活变形,转化证明的能力,本题对灵活转化的能力要求较高,依据条件灵活转化是一种数学素养较高的表现.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π,且当x∈[0,
π
2
]时,f(x)=sinx,则f(
3
)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

20、已知定义在R上的函数f(x)=-2x3+bx2+cx(b,c∈R),函数F(x)=f(x)-3x2是奇函数,函数f(x)在x=-1处取极值.
(1)求f(x)的解析式;
(2)讨论f(x)在区间[-3,3]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足:f(x+2)=
1-f(x)1+f(x)
,当x∈(0,4)时,f(x)=x2-1,则f(2010)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值与最小值的差为4,相邻两个最低点之间距离为π,函数y=sin(2x+
π
3
)图象所有对称中心都在f(x)图象的对称轴上.
(1)求f(x)的表达式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)的图象是连续不断的,且有如下对应值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函数f(x)一定存在零点的区间是(  )

查看答案和解析>>

同步练习册答案