【题目】已知椭圆
=1(a>b>0)的离心率e=
,连结椭圆的四个顶点得到的菱形的面积为4.
(1)求椭圆的方程;
(2)设直线l与椭圆相交于不同的两点A,B.已知点A的坐标为(-a,0).若|AB|=
,求直线l的倾斜角.
【答案】(1)
+y2=1(2)
或![]()
【解析】(1)由e=
=
,解得3a2=4c2.再由c2=a2-b2,解得a=2b.
由题意可知
×2a×2b=4,即ab=2.解方程组
得![]()
所以椭圆的方程为
+y2=1.
(2)由(1)可知点A(-2,0),设点B的坐标为(x1,y1),直线l的斜率为k,则直线l的方程为y=k(x+2).于是A、B两点的坐标满足方程组![]()
消去y并整理,得(1+4k2)x2+16k2x+(16k2-4)=0,
由-2x1=
,得x1=
,从而y1=
,
故|AB|=
=
.
由|AB|=
,得
=
.整理得32k4-9k2-23=0,
即(k2-1)(32k2+23)=0,解得k=±1.所以直线l的倾斜角为
或![]()
科目:高中数学 来源: 题型:
【题目】以下是解决数学问题的思维过程的流程图:
![]()
在此流程图中,①、②两条流程线与“推理与证明”中的思维方法匹配正确的是( )
A.
①—分析法,②—反证法 B. ①—分析法,②—综合法
C. ①—综合法,②—反证法 D. ①—综合法,②—分析法
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
图象上点
处的切线方程与直线
平行(其中
),
.
(Ⅰ)求函数
的解析式;
(Ⅱ)求函数
在
(
)上的最小值;
(Ⅲ)对一切
,
恒成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中,正确的有( )
①函数y=
的定义域为{x|x≥1};
②函数y=x2+x+1在(0,+∞)上是增函数;
③函数f(x)=x3+1(x∈R),若f(a)=2,则f(-a)=-2;
④已知f(x)是R上的增函数,若a+b>0,则有f(a)+f(b)>f(-a)+f(-b).
A. 0个 B. 1个 C. 2个 D. 3个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两人练习罚球,每人练习6组,每组罚球20个,命中个数茎叶图如下:
![]()
(1)求甲命中个数的中位数和乙命中个数的众数;
(2)通过计算,比较甲乙两人的罚球水平.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
为自然对数的底数,
),
(
,![]()
),
⑴若
,
.求
在
上的最大值
的表达式;
⑵若
时,方程
在
上恰有两个相异实根,求实根
的取值范围;
⑶若
,
,求使
得图像恒在
图像上方的最大正整数
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形
是边长为4的正方形,点
为
边上任意一点(与点
不重合),连接
,过点
作
交
于点
,且
,过点
作
,交
于点
,连接
,设
.
![]()
(1)求点
的坐标(用含
的代数式表示)
(2)试判断线段
的长度是否随点
的位置的变化而改变?并说明理由.
(3)当
为何值时,四边形
的面积最小.
(4)在
轴正半轴上存在点
,使得
是等腰三角形,请直接写出不少于4个符合条件的点
的坐标(用含
的式子表示)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com