精英家教网 > 高中数学 > 题目详情
古代印度婆罗门教寺庙内的僧侣们曾经玩过一种被称为“河内宝塔问题”的游戏,其玩法如下:如图,设有n(n∈N*)个圆盘依其半径大小,大的在下,小的在上套在A柱上,现要将套在A柱上的盘换到C柱上,要求每次只能搬动一个,而且任何时候不允许将大盘套在小盘上面,假定有三根柱子A、B、C可供使用.现用an表示将n个圆盘全部从A柱上移到C柱上所至少需要移动的次数,回答下列问题:
(1)写出a1,a2,a3,并求出an
(2)记bn=an+1,求和Sn=
1≤i≤j≤n
bibj
(i,j∈N*);(其中
1≤i≤j≤n
bibj
表示所有的积bibj(1≤i≤j≤n)的和)
证明:
1
7
S1
S2
+
S1S3
S2S4
+…+
S1S3S2n-1
S2S4S2n
4
21
(n∈N*).
分析:(1)由题意要将n个圆盘全部转移到C柱上,只需先将上面n-1个圆盘转移到B柱上,需要an-1次转移,然后将最大的那个圆盘转移到C柱上,需要一次转移,再将B柱上的n-1个圆盘转移到C柱上,需要an-1次转移,所以有an=2an-1+1,利用构造法可求an
(2)先求得和Sn=
1≤i≤j≤n
bibj
=
4
3
(2n-1)(2n+1-1)
,再令cn=
S1S3•…•S2n-1
S2S4•…•S2n
,则当n≥2时
cn
1
4
1
22n-1-1
=
1
4
cn-1(
1
4
)
n-1
c1
,从而利用放缩法可证.
解答:解:(1)a1=1,a2=3,a3=7
事实上,要将n个圆盘全部转移到C柱上,只需先将上面n-1个圆盘转移到B柱上,需要an-1次转移,然后将最大的那个圆盘转移到C柱上,需要一次转移,再将B柱上的n-1个圆盘转移到C柱上,需要an-1次转移,所以有an=2an-1+1则an+1=2(an-1+1)⇒an+1=2n,所以an=2n-1
(2)bn=an+1=2nSn=
1≤i≤j≤n
bibj=
1
2
[(b1+b2+…+bn)2+(
b
2
1
+
b
2
2
+…+
b
2
n
)]
=
1
2
[(2+22+…+2n)2+(22+24+26+…+22n)]
=
1
2
[(2n+1-2)2+
4
3
(4n-1)]=
4
3
(2n-1)(2n+1-1)

cn=
S1S3•…•S2n-1
S2S4•…•S2n
,则当n≥2时cn=
S1S3S2n-1
S2S4S2n
=
(21-1)(22-1)
(22-1)(23-1)
(23-1)(24-1)
(24-1)(25-1)
•…•
(22n-1-1)(22n-1)
(22n-1)(22n+1-1)

=
21-1
22n+1-1
=
1
22n+1-1
=
1
4
1
22n-1-
1
4
1
4
1
22n-1-1
=
1
4
cn-1(
1
4
)
n-1
c1

c1=
1
23-1
=
1
7
4
21
,所以对一切n∈N*有:
S1
S2
+
S1S3
S2S4
+…+
S1S3•…•S2n-1
S2S4•…•S2n
=c1+c2+c3+…+cn
c1+
1
4
c1+(
1
4
)2c1+…+(
1
4
)n-1c1
=c1(
1-(
1
4
)
n
1-
1
4
)=
4
21
-
4
21
•(
1
4
)n
4
21

另方面cn>0恒成立,所以对一切n∈N*有
S1
S2
+
S1S3
S2S4
+…+
S1S3•…•S2n-1
S2S4•…•S2n
=c1+c2+c3+…+cnc1=
1
7

综上所述有:
1
7
S1
S2
+
S1S3
S2S4
+…+
S1S3•…•S2n-1
S2S4•…•S2n
4
21
(n∈N*)
点评:本题的(1)问关键是从特殊中发现一般性的规律,考查构造法求数列的通项;(2)问体现等价转化的数学思想,同时应注意放缩法的运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

古代印度婆罗门教寺庙内的僧侣们曾经玩过一种被称为“河内宝塔问题”的游戏,其玩法如下:如图,设有n(n∈N*)个圆盘依其半径大小,大的在下,小的在上套在A柱上,现要将套在A柱上的盘换到C柱上,要求每次只能搬动一个,而且任何时候不允许将大盘套在小盘上面,假定有三根柱子A,B,C可供使用.

现用an表示将n个圆盘全部从A柱上移到C柱上所至少需要移动的次数,回答下列问题:
(1)写出a1,a2,a3,并求出an
(2)记bn=an+1,求和Sn=
 
1≤i≤j≤n
bibj(i,j∈N*);
(其中
 
1≤i≤j≤n
bibj
表示所有的积bibj(1≤i≤j≤n)的和)
(3)证明:
S1
S2
+
S2
S3
+…+
Sn
Sn+1
n
4
-
3
16
+
3
16
1
2n
(n∈N*)

查看答案和解析>>

科目:高中数学 来源: 题型:

古代印度婆罗门教寺庙内的僧侣们曾经玩过一种被称为“河内宝塔问题”的游戏,其玩法如下:如图,设有个圆盘依其半径大小,大的在下,小的在上套在柱上,现要将套在柱上的盘换到柱上,要求每次只能搬动一个,而且任何时候不允许将大盘套在小盘上面,假定有三根柱子可供使用.

现用表示将个圆盘全部从柱上移到柱上所至少需要移动的次数,回答下列问题:

(1)写出 并求出

(2)记 求和(其中表示所有的积的和)

(3)证明:

查看答案和解析>>

科目:高中数学 来源:2010年重庆市西南师大附中高三下学期五月月考数学(理) 题型:解答题

(本小题满分12分)
古代印度婆罗门教寺庙内的僧侣们曾经玩过一种被称为“河内宝塔问题”的游戏,其玩法如下:如图,设有n)个圆盘依其半径大小,大的在下,小的在上套在A柱上,现要将套在A柱上的盘换到C柱上,要求每次只能搬动一个,而且任何时候不允许将大盘套在小盘上面,假定有三根柱子A、B、C可供使用.

现用an表示将n个圆盘全部从A柱上移到C柱上所至少需要移动的次数,回答下列问题:
(1)   写出a1a2a3,并求出an
(2)   记,求和);
(其中表示所有的积的和)
(3)   证明:

查看答案和解析>>

科目:高中数学 来源:2010-2011学年重庆市高三5月月考考试理科数学 题型:解答题

本小题满分12分)

古代印度婆罗门教寺庙内的僧侣们曾经玩过一种被称为“河内宝塔问题”的游戏,其玩法如下:如图,设有个圆盘依其半径大小,大的在下,小的在上套在A杆上,现要将套在A柱上的盘换到C柱上,要求每次只能搬动一个,而且任何不允许将大盘套在小盘上面,假定有三柱子A,B,C可供使用。

现用表示将n个圆盘全部从A柱上移到C上所至少需要移动的次数,回答下列问题:

   (1)写出,并求出

   (2)记,求和

       (其中表示所有的积的和)

   (3)证明:

 

查看答案和解析>>

同步练习册答案