【题目】设函数![]()
.
(1)求
的单调区间;
(2)当
时,若对
,都有
(
)成立,求
的最大值.
【答案】(1)答案不唯一,具体见解析(2)0
【解析】
(1)
,
.对
分类讨论,可得其单调区间.
(2)当
时,对
,都有
恒成立,
,令
,只需
,利用导数研究其单调性即可得出.
解:(1)
,![]()
.
当
时,
在
恒成立,
在
是单减函数.
当
时,令
,解之得
.
从而,当
变化时,
,
随
的变化情况如下表:
|
|
|
|
| - | 0 | + |
| 单调递减 | 单调递增 |
由上表中可知,
在
是单减函数,在
是单增函数.
综上,当
时,
的单减区间为
;
当
时,
的单减区间为
,单增区间为
.
(2)当
,
为整数,且当
时,
恒成立
令
,只需
;
又
,
由(1)得
在
单调递增,且
,
所以存在唯一的
,使得
,
当
,即
单调递减,
当
,即
单调递增,
所以
时,
取得极小值,也是最小值,当
时,![]()
![]()
而
在
为增函数,![]()
,
即
.而![]()
,
![]()
![]()
,
即所求
的最大值为0.
科目:高中数学 来源: 题型:
【题目】如图所示,在底面是菱形的四棱锥
中,
,点E在PD上,且
.
![]()
(1)证明:
平面ABCD;
(2)求二面角
的大小;
(3)棱PC上是否存在一点F,使
平面AEC?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的
,且球的表面积也是圆柱表面积的
”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积为
,则该圆柱的内切球体积为( )
A.
B.
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在十九大“建设美丽中国”的号召下,某省级生态农业示范县大力实施绿色生产方案,对某种农产品的生产方式分别进行了甲、乙两种方案的改良。为了检查甲、乙两种方案的改良效果,随机在这两种方案中各任意抽取了40件产品作为样本逐件称出它们的重量(单位:克),重量值落在
之间的产品为合格品,否则为不合格品。下表是甲、乙两种方案样本频数分布表。
产品重量 | 甲方案频数 | 乙方案频数 |
| 6 | 2 |
| 8 | 12 |
| 14 | 18 |
| 8 | 6 |
| 4 | 2 |
(1)根据上表数据求甲(同组中的重量值用组中点数值代替)方案样本中40件产品的平均数和中位数
(2)由以上统计数据完成下面
列联表,并回答有多大把握认为“产品是否为合格品与改良方案的选择有关”.
甲方案 | 乙方案 | 合计 | |
合格品 | |||
不合格品 | |||
合计 |
参考公式:
,其中
.
临界值表:
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| 2.706 | 3.814 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系x-O-y中,已知曲线E:
(t为参数)
(1)在极坐标系O-x中,若A、B、C为E上按逆时针排列的三个点,△ABC为正三角形,其中A点的极角θ=
,求B、C两点的极坐标;
(2)在直角坐标系x-O-y中,已知动点P,Q都在曲线E上,对应参数分别为t=α与t=2α (0<α<2π),M为PQ的中点,求 |MO| 的取值范围
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,四棱锥S﹣ABCD中,四边形ABCD为平行四边形,BA⊥AC,SA⊥AD,SC⊥CD.
(Ⅰ)求证:AC⊥SB;
(Ⅱ)若AB=AC=SA=3,E为线段BC的中点,F为线段SB上靠近B的三等分点,求直线SC与平面AEF所成角的正弦值.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com