精英家教网 > 高中数学 > 题目详情
函数f(x)=
x
的图象在x=4处的切线方程是(  )
分析:先x=4代入解析式求出切点的坐标,再求出函数的导数后代入求出f′(4),即为所求的切线斜率,再代入点斜式进行整理即可.
解答:解:把x=4代入f(x)=
x
得,f(4)=2,
∴切点的坐标为:(4,2),
由f′(x)=(
x
)′=
1
2
x -
1
2
,得在点x=4处的切线斜率k=f′(4)=
1
4

∴在点x=4处的切线方程为:y-2=
1
4
(x-4),即x-4y+4=0
故选C.
点评:本题考查了导数的几何意义和直线点斜式方程,关键求出某点处切线的斜率即该点处的导数值,还有切点的坐标,利用切点在曲线上和切线上.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=[x]的函数值表示不超过x的最大整数,如[1.6]=1,[2]=2,已知0≤x<4.
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)记函数g(x)=x-f(x),在给出的坐标系中作出函数g(x)的图象;
(Ⅲ)若方程g(x)-loga(x-
12
)=0(a>0且a≠1)有且仅有一个实根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省广州市高三12月调研数学试卷(理科)(解析版) 题型:选择题

定义:若函数f(x)的图象经过变换T后所得图象对应函数的值域与f(x)的值域相同,则称变换T是f(x)的同值变换.下面给出四个函数及其对应的变换T,其中T不属于f(x)的同值变换的是( )
A.f(x)=(x-1)2,T将函数f(x)的图象关于y轴对称
B.f(x)=2x-1-1,T将函数f(x)的图象关于x轴对称
C.f(x)=2x+3,T将函数f(x)的图象关于点(-1,1)对称
D.,T将函数f(x)的图象关于点(-1,0)对称

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省广州市高三12月调研数学试卷(文科)(解析版) 题型:选择题

定义:若函数f(x)的图象经过变换T后所得图象对应函数的值域与f(x)的值域相同,则称变换T是f(x)的同值变换.下面给出四个函数及其对应的变换T,其中T不属于f(x)的同值变换的是( )
A.f(x)=(x-1)2,T将函数f(x)的图象关于y轴对称
B.f(x)=2x-1-1,T将函数f(x)的图象关于x轴对称
C.f(x)=2x+3,T将函数f(x)的图象关于点(-1,1)对称
D.,T将函数f(x)的图象关于点(-1,0)对称

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案