精英家教网 > 高中数学 > 题目详情
如图所示,直角梯形ACDE与等腰直角△ABC所在平面互相垂直,F为BC的中点,∠BAC=∠ACD=90°,AE∥CD,DC=AC=2AE=2.
(1)求证:平面BCD⊥平面ABC;
(2)求证:AF∥平面BDE;
(3)求四面体B-CDE的体积.
分析:(1)证明平面BCD⊥平面ABC,只需证明DC⊥面ABC,利用面ABC⊥面ACDE,CD⊥AC,即可证得;
(2)取BD的中点P,连接EP、FP,则可证四边形AFPE是平行四边形,所以AF∥EP,即可证得AF∥面BDE;
(3)证明BA⊥面ACDE,可得BA就是四面体B-CDE的高,且BA=2,可求S△CDE=3-1=2,即可求得四面体B-CDE的体积.
解答:(1)证明:∵面ABC⊥面ACDE,面ABC∩面ACDE=AC,CD⊥AC,
∴DC⊥面ABC,…(2分)
又∵DC?面BCD,
∴平面BCD⊥平面ABC.…(4分)
(2)解:取BD的中点P,连接EP、FP,则FP∥
1
2
DC,FP=
1
2
DC
又∵EA∥
1
2
DC,EA=
1
2
DC
∴EA∥FP,EA=FP…(6分)
∴四边形AFPE是平行四边形,∴AF∥EP,
又∵EP?面BDE且AF?面BDE,∴AF∥面BDE.…(8分)
(3)解:∵BA⊥AC,面ABC∩面ACDE=AC,∴BA⊥面ACDE.
∴BA就是四面体B-CDE的高,且BA=2.…(10分)
∵DC=AC=2AE=2,AE∥DC,
S梯形ACDE=
1
2
(1+2)×2=3,S△ACE=
1
2
×1×2=1

∴S△CDE=3-1=2,∴VE-CDE=
1
3
×2×2=
4
3
.…(12分)
点评:本题考查面面垂直,线面平行,考查四面体B-CDE的体积,解题的关键是掌握面面垂直,线面平行的判定方法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,直角梯形ABCD绕边AD所在直线旋转一周形成的面所围成的旋转体是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•永州一模)如图所示,直角梯形ABCD中,∠A=∠D=90°,AD=2,AB=3,CD=4,P在线段AB上,BP=1,O在CD上,且OP∥AD,将图甲沿OP折叠使得平面OCBP⊥底面ADOP,得到一个多面体(如图乙),M、N分别是AC、OP的中点.
(1)求证:MN⊥平面ACD;
(2)求平面ABC与底面OPAD所成角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,直角梯形ABCD绕边AD所在直线旋转一周形成的面所围成的旋转体是(  )
A.圆台B.圆锥
C.由圆台和圆锥组合而成D.由圆柱和圆锥组合而成
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直角梯形ABCD中,∠BAD=∠ADC=90°,CD=DA=a,AB=2a,SA⊥平面ABCD,且SA=a,

(1)求证:△SAD、△SAB、△SDC、△SCB都是直角三角形;

(2)在SD上取点M,SC交平面ABM于N,求证:四边形ABNM是直角梯形;

(3)若SM=x,写出BM=f(x)的表达式,并求当x为何值时,BM最小?最小值是多少?

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山西省运城市临猗中学高二(上)周测数学试卷(七)(理科)(解析版) 题型:选择题

如图所示,直角梯形ABCD绕边AD所在直线旋转一周形成的面所围成的旋转体是( )
A.圆台
B.圆锥
C.由圆台和圆锥组合而成
D.由圆柱和圆锥组合而成

查看答案和解析>>

同步练习册答案