【题目】已知函数
,其中
为自然对数的底数,常数
.
(1)求函数
在区间
上的零点个数;
(2)函数
的导数
,是否存在无数个
,使得
为函数
的极大值点?说明理由.
【答案】(1)1(2)存在
【解析】【试题分析】(1)对函数求导后得到函数的单调区间,利用二分法判断函数在给定区间上只有一个零点.(2)原命题等价于,存在无数个
,使得
成立,求得
的表达式,构造为函数
,利用导数证得
存在负值即可.
【试题解析】
(1)
,当
时,
单调递减;当
时,
单调递增;
因为
,所以存在
,使
,
且当
时,
,当
时,
.
故函数
在区间
上有1个零点,即
.
(2)(法一)当
时,
.
因为当
时,
;当
,
.
由(1)知,当
时,
;当
时,
.
下证:当
时,
,即证
.
,
记
…
,所以
在
单调递增,
由
,
所以存在唯一零点
,使得
,且
时,
单调递减,
时,
单调递增.
所以当
时,
.……
由
,得当
时,
.
故
.
当
时,
单调递增;
当
时,
单调递减.
所以存在
,使得
为
的极大值点.
(2)(法二)因为当
时,
;当
,
.
由(1)知,当
时,
;当
时,
.
所以存在无数个
,使得
为函数
的极大值点,即存在无数个
,使得
成立, ①…由(1),问题①等价于,存在无数个
,使得
成立,
因为
,
记
…
因为
,当
时,
,所以
在
单调递增,因为
,
所以存在唯一零点
,使得
,且当
时,
单调递减;当
时,
单调递增;
所以,当
时,
, ②…
由
,可得
,代入②式可得
,
当
时,
,
所以,必存在
,使得
,即对任意
有解,
所以对任意
,函数
存在极大值点为
.…
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程是
(
为参数),以该直角坐标系的原点
为极点,
轴的正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)写出曲线
的普通方程和直线
的直角坐标方程;
(2)设点
,直线
与曲线
相交于
两点,且
,求实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有甲、乙两个桔柚(球形水果)种植基地,已知所有采摘的桔柚的直径都在
范围内(单位:毫米,以下同),按规定直径在
内为优质品,现从甲、乙两基地所采摘的桔柚中各随机抽取500个,测量这些桔柚的直径,所得数据整理如下:
![]()
(1)根据以上统计数据完成下面
列联表,并回答是否有
以上的把握认为“桔柚直径与所在基地有关”?
![]()
(2)求优质品率较高的基地的500个桔柚直径的样本平均数
(同一组数据用该区间的中点值作代表);
(3)记甲基地直径在
范围内的五个桔柚分别为
,现从中任取二个,求含桔柚
的概率.
附:
,
.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
、
,且点
到椭圆
上任意一点的最大距离为3,椭圆
的离心率为
.
(1)求椭圆
的标准方程;
(2)是否存在斜率为
的直线
与以线段
为直径的圆相交于
、
两点,与椭圆相交于
、
,且
?若存在,求出直线
的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD中, PA⊥平面ABCD,E为BD的中点,G为PD的中点,△DAB≌△DCB,EA=EB=AB=1,
,连接CE并延长交AD于F.
(Ⅰ)求证:AD⊥CG;
(Ⅱ)求平面BCP与平面DCP的夹角的余弦值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为抛物线
的焦点,点
为其上一点,
与
关于
轴对称,直线
与抛物线交于异于
的
两点,
,
.
(1)求抛物线的标准方程和
点的坐标;
(2)判断是否存在这样的直线
,使得
的面积最小.若存在,求出直线
的方程和
面积的最小值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在
,
,
,
,
,
(单位:克)中,经统计得频率分布直方图如图所示.
![]()
(1)现按分层抽样从质量为
,
的芒果中随机抽取
个,再从这
个中随机抽取
个,记随机变量
表示质量在
内的芒果个数,求
的分布列及数学期望.
(2)以各组数据的中间数代表这组数据的平均值,将频率视为概率,某经销商来收购芒果,该种植园中还未摘下的芒果大约还有
个,经销商提出如下两种收购方案:
A:所以芒果以
元/千克收购;
B:对质量低于
克的芒果以
元/个收购,高于或等于
克的以
元/个收购.
通过计算确定种植园选择哪种方案获利更多?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2017年6月深圳地铁总公司对深圳地铁1号线30个站的工作人员的服务态度进行了满意度调查,其中世界之窗、白石洲、高新园、深大、桃园、大新6个站的得分情况如下:
地铁站 | 世界之窗 | 白石州 | 高新园 | 深大 | 桃园 | 大新 |
满意度得分 | 70 | 76 | 72 | 70 | 72 | x |
已知6个站的平均得分为75分.
(1)求大新站的满意度得分x,及这6个站满意度得分的标准差;
(2)从表中前5个站中,随机地选2个站,求恰有1个站得分在区间(68,75)中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
的参数方程是:
(
是参数,
是常数).以
为极点,
轴正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(1)求直线
的普通方程和曲线
的直角坐标方程;
(2)若直线
与曲线
相交于
、
两点,且
,求实数
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com