(本题满分12分)如图所示,直三棱柱ABC—A1B1C1中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1、A1A的中点.
![]()
(1)求
的长; (2)求cos<
>的值; (3)求证:A1B⊥C1M.
(1)|
|=
.
(2)cos<
,
>=
.
(3)计算
·
=0,推出A1B⊥C1M。
【解析】
试题分析:如图,建立空间直角坐标系O—xyz.
![]()
(1)依题意得B(0,1,0)、N(1,0,1)
∴|
|=
.。。4分
(2)依题意得A1(1,0,2)、B(0,1,0)、C(0,0,0)、B1(0,1,2)
∴
=(1,-1,2),
=(0,1,2,),
·
=3,|
|=
|
|=![]()
∴cos<
,
>=
.。。。。。。。8分
(3)证:依题意,得C1(0,0,2)、M(
,2),
=(-1,1,-2),
={
,0}.∴
·
=-
+0=0,∴
⊥
,∴A1B⊥C1M..。。。。。12分
考点:本题主要考查立体几何中线线垂直,距离及角的计算,空间向量的应用
点评:典型题,立体几何中平行、垂直关系的证明,距离及角的计算问题是高考中的必考题,通过建立适当的坐标系,可使问题简化,向量的坐标运算要准确。
科目:高中数学 来源:2014届江西高安中学高二上期末考试理科数学试卷(解析版) 题型:解答题
(本题满分12分)
如图所示的几何体是由以正三角形
为底面的直棱柱被平面
所截而得.
,
为
的中点.
![]()
(1)当
时,求平面
与平面
的夹角的余弦值;
(2)当
为何值时,在棱
上存在点
,使
平面
?
查看答案和解析>>
科目:高中数学 来源:2012-2013学年湖北省八市高三3月联考理科数学试卷(解析版) 题型:解答题
(本题满分12分)如图,在长方体
中,已知上下两底面为正方形,且边长均为1;侧棱
,为
中点,
为
中点,
为
上一个动点.
![]()
(Ⅰ)确定
点的位置,使得
;
(Ⅱ)当
时,求二面角
的平
面角余弦值.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广西桂林中学高三7月月考试题理科数学 题型:解答题
(本题满分12分)如图,在四棱锥P—ABCD中,底面ABCD为正方形,PD⊥平面ABCD,且PD=AB=2,E是PB的中点,F是AD的中点.
![]()
⑴求异面直线PD与AE所成角的大小;
⑵求证:EF⊥平面PBC ;
⑶求二面角F—PC—B的大小..
查看答案和解析>>
科目:高中数学 来源:2011年湖南省招生统一考试文科数学 题型:解答题
(本题满分12分)
如图3,在圆锥
中,已知
的直径
的中点.
(I)证明:![]()
(II)求直线和平面
所成角的正弦值.![]()
查看答案和解析>>
科目:高中数学 来源:2010年海南省高三五校联考数学(文) 题型:解答题
(本题满分12分)
如图,三棱锥S—ABC中,AB⊥BC,D、E分别为AC、BC的中点,SA=SB=SC。
(1)求证:BC⊥平面SDE;
(2)若AB=BC=2,SB=4,求三棱锥S—ABC的体积。
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com