设椭圆
的左焦点为F, 离心率为
, 过点F且与x轴垂直的直线被椭圆截得的线段长为
.
(Ⅰ) 求椭圆的方程;
(Ⅱ) 设A, B分别为椭圆的左右顶点, 过点F且斜率为k的直线与椭圆交于C, D两点. 若
, 求k的值.
科目:高中数学 来源: 题型:解答题
设抛物线C:
的焦点为F,经过点F的直线与抛物线交于A、B两点.
(1)若
,求线段
中点M的轨迹方程;
(2)若直线AB的方向向量为
,当焦点为
时,求
的面积;
(3)若M是抛物线C准线上的点,求证:直线
的斜率成等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
极坐标系与直角坐标系xOy有相同的长度单位,以原点D为极点,以x轴正半轴为极轴,曲线Cl的极坐标方程为
,曲线C2的参数方程为
为参数)。
(1)当
时,求曲线Cl与C2公共点的直角坐标;
(2)若
,当
变化时,设曲线C1与C2的公共点为A,B,试求AB中点M轨迹的极坐标方程,并指出它表示什么曲线.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
与直线
相交于
两点.
(1)若椭圆的半焦距
,直线
与
围成的矩形
的面积为8,
求椭圆的方程;
(2)若
(
为坐标原点),求证:
;
(3)在(2)的条件下,若椭圆的离心率
满足
,求椭圆长轴长的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
平面内动点
到点
的距离等于它到直线
的距离,记点
的轨迹为曲
.
(Ⅰ)求曲线
的方程;
(Ⅱ)若点
,
,
是
上的不同三点,且满足
.证明:
不可能为直角三角形.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
过直线y=﹣1上的动点A(a,﹣1)作抛物线y=x2的两切线AP,AQ,P,Q为切点.
(1)若切线AP,AQ的斜率分别为k1,k2,求证:k1•k2为定值.
(2)求证:直线PQ过定点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com