精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥的底面是正方形,平面.

1)证明:平面

2)若,求二面角的余弦值.

【答案】1)证明见解析(2

【解析】

1)由平面及底面是正方形可证得平面,,又由,即可求证;

2)以为原点,分别以所在的直线为x轴、y轴、z轴建立空间直角坐标系,由(1)可知为平面的一个法向量,求得平面的一个法向量,进而利用数量积求解即可

1)证明:因为平面,平面,

所以,

因为底面是正方形,所以,

,所以平面,

因为平面,所以,

又因为,平面,

所以平面

2)因为平面,底面为正方形,

所以,以为原点,分别以所在的直线为x轴、y轴、z轴建立空间直角坐标系(如图所示),

,则,

因为,所以中点,所以,

所以,

由(1)得为平面的一个法向量,

设平面的一个法向量为,

,,,则,所以,

因此,

由图可知二面角的大小为钝角,

故二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若关于x的方程e为自然对数的底数)有且仅有6个不等的实数解,则实数a的取值范围是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求函数处的切线方程;

(2)令,讨论函数的单调性;

(3)当时,,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学大学毕业后,决定利用所学专业进行自主创业,经过市场调查,生产一小型电子产品需投入固定成本2万元,每生产x万件,需另投入流动成本C(x)万元,当年产量小于7万件时,C(x)=x2+2x(万元);当年产量不小于7万件时,C(x)=6x+1nx+﹣17(万元).已知每件产品售价为6元,假若该同学生产的产M当年全部售完.

(1)写出年利润P(x)(万元)关于年产量x(万件)的函数解析式;(注:年利润=年销售收人﹣固定成本﹣流动成本

(2)当年产量约为多少万件时,该同学的这一产品所获年利润最大?最大年利润是多少?(取e3≈20)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若,求实数取值的集合;

(Ⅱ)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“干支纪年法”是中国历法上自古以来使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为:甲子、乙丑、丙寅、…、癸酉,甲戌、乙亥、丙子、…、癸未,甲申、乙酉、丙戌、…、癸巳,…,共得到60个组合,周而复始,循环记录.2010年是“干支纪年法”中的庚寅年,那么2020年是“干支纪年法”中的( )

A.已亥年B.戊戌年C.庚子年D.辛丑年

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,设点集.从集合Mn中任取两个不同的点,用随机变量X表示它们之间的距离.

1)当n=1时,求X的概率分布;

2)对给定的正整数nn≥3),求概率PXn)(用n表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一块三棱锥形木块,各面均是锐角三角形,其中面内有一点.

1)若要在面内过点画一条线段,其中点在线段上,点在线段上,且满足垂直,该如何求作?请在图中画出线段并说明画法,不必证明;

2)经测量,,若恰为三角形的重心,为(1)中所求线段,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】天气预报说,今后三天每天下雨的概率相同,现用随机模拟的方法预测三天中有两天下雨的概率,用骰子点数来产生随机数.依据每天下雨的概率,可规定投一次骰子出现1点和2点代表下雨;投三次骰子代表三天;产生的三个随机数作为一组.得到的10组随机数如下:613265114236561435443251154353.则在此次随机模拟试验中,每天下雨的概率的近似值是__________,三天中有两天下雨的概率的近似值为__________

查看答案和解析>>

同步练习册答案