【题目】在直角坐标系
中,直线
与抛物线
交于
,
两点,且
.
(1)求
的方程;
(2)试问:在
轴的正半轴上是否存在一点
,使得
的外心在
上?若存在,求
的坐标;若不存在,请说明理由..
科目:高中数学 来源: 题型:
【题目】给出以下四个结论:
①过点
,在两轴上的截距相等的直线方程是
;
②若
是等差数列
的前n项和,则
;
③在
中,若
,则
是等腰三角形;
④已知
,
,且
,则
的最大值是2.
其中正确的结论是________(写出所有正确结论的番号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“三个臭皮匠,赛过诸葛亮”,这是我们常说的口头禅,主要是说集体智慧的强大. 假设李某智商较高,他独自一人解决项目M的概率为
;同时,有
个水平相同的人也在研究项目M,他们各自独立地解决项目M的概率都是
.现在李某单独研究项目M,且这
个人组成的团队也同时研究项目M,设这个
人团队解决项目M的概率为
,若
,则
的最小值是( )
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某景区的各景点从2009年取消门票实行免费开放后,旅游的人数不断地增加,不仅带动了该市淡季的旅游,而且优化了旅游产业的结构,促进了该市旅游向“观光、休闲、会展”三轮驱动的理想结构快速转变.下表是从2009年至2018年,该景点的旅游人数
(万人)与年份
的数据:
第 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
旅游人数 | 300 | 283 | 321 | 345 | 372 | 435 | 486 | 527 | 622 | 800 |
![]()
该景点为了预测2021年的旅游人数,建立了
与
的两个回归模型:
模型①:由最小二乘法公式求得
与
的线性回归方程
;
模型②:由散点图的样本点分布,可以认为样本点集中在曲线
的附近.
(1)根据表中数据,求模型②的回归方程
.(
精确到个位,
精确到0.01).
(2)根据下列表中的数据,比较两种模型的相关指数
,并选择拟合精度更高、更可靠的模型,预测2021年该景区的旅游人数(单位:万人,精确到个位).
回归方程 | ① | ② |
| 30407 | 14607 |
参考公式、参考数据及说明:
①对于一组数据
,其回归直线
的斜率和截距的最小二乘法估计分别为
.②刻画回归效果的相关指数
;③参考数据:
,
.
|
|
|
|
|
|
5.5 | 449 | 6.05 | 83 | 4195 | 9.00 |
表中
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某制造商
月生产了一批乒乓球,随机抽样
个进行检查,测得每个球的直径(单位:mm),将数据分组如下表
分组 | 频数 | 频率 |
| 10 | |
| 20 | |
| 50 | |
| 20 | |
合计 | 100 |
![]()
(1)请在上表中补充完成频率分布表(结果保留两位小数),并在上图中画出频率分布直方图;
(2)统计方法中,同一组数据常用该组区间的中点值(例如区间
的中点值是
)作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知圆
,三个点
,B、C均在圆
上,
(1)求该圆的圆心
的坐标;
(2)若
,求直线BC的方程;
(3)设点
满足四边形TABC是平行四边形,求实数t的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com