精英家教网 > 高中数学 > 题目详情
已知函数f(x)=xlnx,g(x)=x+
a2x
,(a>0).
(Ⅰ)求f(x)在区间[1,e](e为自然对数的底数)上的最大值;
(Ⅱ)若对任意的x1,x2∈[1,e]都有g(x1)≥f(x2)成立,求实数a的取值范围.
分析:(Ⅰ)由f(x)=xlnx,知x>0,f′(x)=lnx+1,由此能求出f(x)在区间[1,e](e为自然对数的底数)上的最大值.
(Ⅱ)若对任意的x1,x2∈[1,e]都有g(x1)≥f(x2)成立等价于g(x1min≥f(x2max,从而转化为分别求函数g(x),f(x)在[1,e]的最小值、最大值.
解答:解:(Ⅰ)∵f(x)=xlnx,
∴x>0,f′(x)=lnx+1,
由f′(x)=lnx+1>0,得x>
1
e

∴f(x)的增区间是(
1
e
,+∞
).
由f′(x)=lnx+1<0,得x<
1
e

∴f(x)的减区间是(0,
1
e
).
∴f(x)在区间[1,e]上上单调递增,
∴f(x)在区间[1,e]上的最大值f(x)max=f(e)=elne=e.
(Ⅱ)对任意的x1,x2∈[1,e]都有g(x1)≥f(x2)成立,等价于对任意的x1,x2∈[1,e]都有[g(x)]min≥[f(x)]max
当x∈[1,e]时,f′(x)=lnx+1>0.
∴函数f(x)=xlnx在[1,e]上是增函数.
∴[f(x)]max=f(e)=e.
g(x)=x+
a2
x
,(a>0),
g (x)=1-
a2
x2
=
(x+a)(x-a)
x2
,且x∈[1,e],a>0.
①当0<a<1且x∈[1,e]时,g(x)= 
(x+a)(x-a)
x2
>0,
∴函数g(x)=x+
a2
x
,在[1,e]上是增函数,
∴[g(x)]min=g(1)=1+a2
由1+a2≥e,得a≥
e-1

又0<a<1,∴a不合题意.
②当1≤a≤e时,
若1≤x<a,则g(x)= 
(x+a)(x-a)
x2
<0,
若a<x≤e,则g(x)= 
(x+a)(x-a)
x2
>0.
∴函数g(x)=x+
a2
x
在[1,a)上是减函数,在(a,e]上是增函数.
∴[g(x)]min=g(a)=2a.
由2a≥e,得a≥
e
2

又1≤a≤e,∴
e
2
≤a≤e.
③当a>e且x∈[1,e]时,g(x)= 
(x+a)(x-a)
x2
<0,
∴函数g(x)=x+
a2
x
在[1,e]上是减函数.
[g(x)]min=g(e)=e+
a2
e

e+
a2
e
≥e,得a∈R,
又a>e,∴a>e. (15分)
综上所述,a的取值范围为[
e
2
,+∞)
点评:本题综合考查了极值存在的性质及零点判定定理的运用,函数的恒成立问题,解决此类问题常把问题进行转化,体现了转化的思想、方程与函数的思想的运用.属于中等难度的试题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案