精英家教网 > 高中数学 > 题目详情
已知P是直角三角形ABC所在平面外一点,O是斜边AB的中点,且PA=PB=PC。
求证:PO⊥平面ABC。

证明:连接OC,如图所示,

∵AB是Rt△ABC的斜边,O是AB的中点,
∴OA=OB=OC,
∵PA=PB=PC,
∴△POA≌△POB≌△POC,
∴∠POA=∠POB=∠POC,
∵∠POA+∠POB=180°,
∴∠POA=∠POB=90°,
∴∠POC=90°,即PO⊥OA ,PO⊥OC,
∵OA∩OC=O,
∴PO⊥平面ABC。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线S的两个焦点F1、F2在x轴上,它的两条渐近线分别为l1、l2,y=
3
3
x是其中的一条渐近线的方程,两条直线X=±
3
2
是双曲线S的准线.
(I)设A、B分别为l1、l2上的动点,且2|
AB
|=5
F1F2
,求线段AB的中点M的轨迹方程:
(II)已知O是原点,经过点N(0,1)是否存在直线l,使l与双曲线S交于P,E且△POE是以PE为斜边的直角三角形?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列结论:
①已知命题p:?x∈R,tanx=1;命题q:?x∈R,x2-x+1>0.则命题“p∧?q”是假命题;
②函数y=
|x|
x2+1
的最小值为
1
2
且它的图象关于y轴对称;
③“a>b”是“2a>2b”的充分不必要条件;
④在△ABC中,若sinAcosB=sinC,则△ABC中是直角三角形.
⑤若tanθ=2,则sin2θ=
4
5

其中正确命题的序号为
①④⑤
①④⑤
.(把你认为正确的命题序号填在横线处)

查看答案和解析>>

科目:高中数学 来源: 题型:

下面给出五个命题:
①已知平面α∥平面β,AB,CD是夹在α,β间的线段,若AB∥CD,则AB=CD;
②a,b是异面直线,b,c是异面直线,则a,c一定是异面直线;
③三棱锥的四个面可以都是直角三角形.
④平面α∥平面β,P∈α,PQ∥β,则PQ⊆α;
⑤三棱锥中若有两组对棱互相垂直,则第三组对棱也一定互相垂直;
其中正确的命题编号是
①③④⑤
①③④⑤
(写出所有正确命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点B(1,0),P是函数y=ex图象上不同于A(0,1)的一点.有如下结论:
①存在点P使得△ABP是等腰三角形;
②存在点P使得△ABP是锐角三角形;
③存在点P使得△ABP是直角三角形.
其中,正确的结论的个数为(  )

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省赣州市十二县(市)高二(下)期中数学试卷(文科)(解析版) 题型:选择题

已知P为椭圆(a>b>0)上一点,F1,F2是椭圆的左、右焦点,若使△PF1F2为直角三角形的点P有且只有4个,则椭圆离心率的取值范围是( )
A.(0,
B.(,1)
C.(1,
D.(,+∞)

查看答案和解析>>

同步练习册答案