精英家教网 > 高中数学 > 题目详情

如图,三个平面两两相交于三条直线,若这三条直线不互相平行,求证:这三条直线必交于一点.

答案:
解析:

  证明:设α∩β=a,β∩γ=b,γ∩α=c.

  因为a,b,c不互相平行,不妨设a与b相交于点O.

  因为aα,bγ,

  所以点O是平面α与γ的一个公共点,

  而α与γ的交线为c,

  所以O∈c(利用公理3).

  故直线a,b,c相交于同一点O,得证.

  点评:要证多线共点,一般先找出两个平面使它们的交线是其中的一条,然后再证明其他直线的交点也是这两个平面的公共点.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•盐城一模)如图,在平面直角坐标系xoy中,已知点A为椭圆
x2
9
+
2y2
9
=1
的右顶点,点D(1,0),点P,B在椭圆上,
BP
=
DA

(1)求直线BD的方程;
(2)求直线BD被过P,A,B三点的圆C截得的弦长;
(3)是否存在分别以PB,PA为弦的两个相外切的等圆?若存在,求出这两个圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图2-3-9,正方体有8个顶点和12条棱,每条棱上均有一个中点,于是有棱的中点12个,顶点与中点合起来共有20个〔图2-3-9(1)〕.过其中的两点可作一条直线;过其中不在同一直线上的三点可作一个平面.现在考虑这些直线与平面的垂直关系.

                                      图2-3-9

(1)试举出一直线与一平面相互垂直的例子(不少于4例).

(2)若一直线与一平面相互垂直,我们就说这条直线与这个平面构成了一个“垂直关系组”,两个“垂直关系组”当且仅当其中两条直线和两个平面不全同一时称为相异的(或不同的).试求与正方体的棱相关的“垂直关系组”的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体有8个顶点和12条棱,每条棱上均有一个中点,于是有棱的中点12个,顶点与中点合起来共有20个〔图 (1)〕.过其中的两点可作一条直线;过其中不在同一直线上的三点可作一个平面.现在考虑这些直线与平面的垂直关系.

(1)试举出一直线与一平面相互垂直的例子(不少于4例);

(2)若一直线与一平面相互垂直,我们就说这条直线与这个平面构成了一个“垂直关系组”,两个“垂直关系组”当且仅当其中两条直线和两个平面不全同一时称为相异的(或不同的).试求与正方体的棱相关的“垂直关系组”的个数.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省高三年级暑期检测数学试卷(解析版) 题型:解答题

(本小题满分16分)

如图,在平面直角坐标系中,已知点为椭圆的右顶点, 点,点在椭

圆上, .

 

(1)求直线的方程;

(2)求直线被过三点的圆截得的弦长;

(3)是否存在分别以为弦的两个相外切的等圆?若存在,求出这两个圆的方程;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省南京市、盐城市高三第一次模拟考试数学(解析版) 题型:解答题

(本小题满分16分)   如图,在平面直角坐标系中,已知点为椭圆

的右顶点, 点,点在椭圆上, .

(1)求直线的方程; (2)求直线被过三点的圆截得的弦长;

(3)是否存在分别以为弦的两个相外切的等圆?若存在,求出这两个圆的方程;若不

存在,请说明理由

 

 

 

查看答案和解析>>

同步练习册答案