精英家教网 > 高中数学 > 题目详情
直四棱柱ABCD-A1B1C1D1中,底面ABCD为菱形,且∠BAD=60°,A1A=AB=2,E为BB1延长线上的一点,D1E⊥面D1AC.
(1)若H是BB1的中点,证明:DH∥D1E;
(2)求三棱锥A-CDE的体积;
(3)求二面角E-AC-D1的大小.

【答案】分析:(1)证明DH⊥面D1AC,利用D1E⊥面D1AC,可得DH∥D1E;
(2)证明四边形DD1HE是平行四边形,棱锥A-CDE的体积等于三棱锥B-CDE的体积,等于三棱锥D-BCE的体积,即可求得结论;
(3)建立直角坐标系,确定E的坐标,求出平面EAC的法向量,平面D1AC的法向量为=(0,2,1),利用向量的夹角公式,可求二面角E-AC-D1的大小.
解答:(1)证明:连接BD交AC于O,

在矩形BDD1B1中,O是BD的中点,H是BB1的中点
,∴∠HDB=∠DD1O,∴
∵AC⊥平面BDD1B1,DH?平面BDD1B1
∴AC⊥DH
∵AC∩D1O=O
∴DH⊥面D1AC,
又∵D1E⊥面D1AC,∴DH∥D1E;
(2)解:由(1)知DH∥D1E,
∵DD1∥EH,∴四边形DD1HE是平行四边形
∴EH=DD1=2,∴BE=3
∵AB∥CD,∴三棱锥A-CDE的体积等于三棱锥B-CDE的体积,等于三棱锥D-BCE的体积
∵∠BAD=60°,AB=2,∴D到平面BC1的距离为
∴D-BCE的体积等于=
∴三棱锥A-CDE的体积等于
(3)解:建立如图所示的直角坐标系,则A,B(0,1,0),C(-,0,0),D(0,-1,0),D1(0,-1,2)
设E(0,1,2+h),则=
∵D1E⊥面D1AC,∴D1E⊥AC,D1E⊥D1A
∴2-2h=0,∴h=1,即E(0,1,3)

设平面EAC的法向量为
,可得,令z=-1,则
∵平面D1AC的法向量为=(0,2,1)
∴cos<>===
∴二面角E-AC-D1的大小为45°.
点评:本题考查线面垂直,考查线线平行,考查三棱锥体积的计算,考查面面角,考查利用向量法解决空间角问题,确定平面的法向量是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在直四棱柱ABCD-A′B′C′D′中,底面ABCD为梯形,BC∥AD,AA′=AB=
2
,AD=2BC=2,直线AD与面ABB'A'所成角为45°.
(Ⅰ)求证:DB⊥面ABB'A';
(Ⅱ)求证:AD'⊥B'C;
(Ⅲ)求二面角D-AB'-B的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知直四棱柱ABCD-A′B′C′D′,四边形ABCD为正方形,AA′=2AB=2,E为棱CC′的中点.
(Ⅰ)求证:A′E⊥平面BDE;
(Ⅱ)设F为AD中点,G为棱BB′上一点,且BG=
14
BB′
,求证:FG∥平面BDE;
(Ⅲ)在(Ⅱ)的条件下求二面角G-DE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直四棱柱ABCD-A′B′C′D′的底面是菱形,∠ABC=60°,E、F分别是棱CC′与BB′上的点,且EC=BC=2FB=2.
(1)求证:平面AEF⊥平面AA′C′C;
(2)求截面AEF与底面ABCD的夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

在高为1的直四棱柱ABCD-A'B'C'D'中,底面ABCD是等腰梯形,AB=BC=CD=1,AD=2. 
(1)求异面直线BC'与CD'所成的角;
(2)求被截面ACD'所截的两部分几何体的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•崇明县一模)如图,在直四棱柱ABCD-A'B'C'D'中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E、F、G分别是棱A1B1、AB、A1D1的中点.
(1)证明:直线GE⊥平面FCC1
(2)求二面角B-FC1-C的大小.

查看答案和解析>>

同步练习册答案