(本小题满分13分)
已知函数f(x)=
为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为![]()
(Ⅰ)求f(
)的值;
(Ⅱ)将函数y=f(x)的图象向右平移
个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.
(本小题满分13分)
解:(Ⅰ)f(x)=
=![]()
=2sin(
-
),因为 f(x)为偶函数,所以 对x∈R,f(-x)=f(x)恒成立,因此 sin(-
-
)=sin(
-
).
即-sin
cos(
-
)+cos
sin(
-
)=sin
cos(
-
)+cos
sin(
-
),
整理得 sin
cos(
-
)=0.因为
>0,且x∈R,所以 cos(
-
)=0.
又因为 0<
<π,故
-
=
.所以 f(x)=2sin(
+
)=2cos
.
由题意得
故f(x)=2cos2x.
所以![]()
(Ⅱ)将f(x)的图象向右平移个
个单位后,得到
的图象,再将所得图象横坐标伸长到原来的4倍,纵坐标不变,得到
的图象.
![]()
当 2kπ≤
≤2 kπ+ π (k∈Z),
即 4kπ+
≤x≤4kπ+
(k∈Z)时,g(x)单调递减.
因此g(x)的单调递减区间为
(k∈Z)
科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题
(本小题满分13分)已知函数![]()
.
(1)求函数
的最小正周期和最大值;
(2)在给出的直角坐标系中,画出函数
在区间
上的图象.
(3)设0<x<
,且方程
有两个不同的实数根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题
(本小题满分13分)已知定义域为
的函数
是奇函数.
(1)求
的值;(2)判断函数
的单调性;
(3)若对任意的
,不等式恒成立
,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题
(本小题满分13分)如图,正三棱柱
的所有棱长都为2,
为
的中点。
(Ⅰ)求证:
∥平面
;
(Ⅱ)求异面直线
与
所成的角。www.7caiedu.cn
[来源:KS5
U.COM
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题
(本小题满分13分)
已知
为锐角,且
,函数
,数列{
}的首项
.
(1) 求函数
的表达式;
(2)在
中,若
A=2
,
,BC=2,求
的面积
(3) 求数列
的前
项和![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com