精英家教网 > 高中数学 > 题目详情

如图,在各棱长均为的三棱柱中,侧面底面

(1)求侧棱与平面所成角的正弦值的大小;

(2)已知点满足,在直线上是否存在点,使?若存在,请确定点的位置;若不存在,请说明理由.

 

【答案】

(1)(2)存在点,使.

【解析】

试题分析:(1)首先根据几何体的性质建立空间直角坐标系,利用“侧棱与平面所成角,即是向量与平面的法向量所成锐角的余角”,借助向量夹角公式进行计算;(2)假设存在点P满足,设出其坐标,然后根据建立等量关系,确定P点坐标即可.

试题解析:(1)∵侧面底面,作于点,∴平面

,且各棱长都相等,∴.                                               2分

故以为坐标原点,建立如图所示的空间直角坐标系,则

.  4分

设平面的法向量为

   

解得.由

而侧棱与平面所成角,即是向量与平面的法向量所成锐角的余角,

∴侧棱与平面所成角的正弦值的大小为                  6分

(2)∵,而 

又∵,∴点的坐标为

假设存在点符合题意,则点的坐标可设为,∴

为平面的法向量,

∴由,得.             10分

平面,故存在点

使,其坐标为

即恰好为点.                  12分

考点:1.线面角;2.线面平行;(3)空间向量的应用.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在各棱长均为2的三棱柱ABC-A1B1C1中,侧面A1ACC1⊥底面ABC,∠A1AC=60°.
(Ⅰ)求侧棱AA1与平面AB1C所成角的正弦值的大小;
(Ⅱ)已知点D满足
BD
=
BA
+
BC
,在直线AA1上是否存在点P,使DP∥平面AB1C?若存在,请确定点P的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在各棱长均为2的三棱柱ABC-ABC中,侧面AACC⊥底面ABC

AAC=60°.(Ⅰ)求侧棱AA与平面ABC所成角的正弦值的大小;

(Ⅱ)已知点D满足,在直线AA上是否存在点P,使DP∥平面ABC?若存在,请确定点P的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省黄冈市高三6月适应性考试理科A数学试卷(解析版) 题型:解答题

如图,在各棱长均为的三棱柱中,侧面底面

(1)求侧棱与平面所成角的正弦值的大小;

(2)已知点满足,在直线上是否存在点,使?若存在,请确定点的位置;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012年广东省高二12月月考理科数学 题型:解答题

如图,在各棱长均为2的三棱柱ABC-ABC中,侧面AACC⊥底面ABC,∠AAC=60°.

(Ⅰ)求侧棱AA与平面ABC所成角的正弦值的大小;

(Ⅱ)已知点D满足,在直线AA上是否存在点P,使DP∥平面ABC?若存在,请确定点P的位置;若不存在,请说明理由.

 

 

查看答案和解析>>

同步练习册答案