精英家教网 > 高中数学 > 题目详情
已知函数(其中x∈R,A>0,ω>0)的最大值为2,最小正期为8.
(1)求函数f(x)的解析式;
(2)若函数f(x)图象上的两点P,Q的横坐标依次为2,4,O为坐标原点,求cos∠POQ的值.
【答案】分析:(1)由函数的最值求出A,由周期求出ω,从而得到函数的解析式.
(2)根据条件求得P和 Q的坐标,|OP|、|PQ|、|OQ|的值,再利用余弦定理求得cos∠POQ.
解答:解:(1)由题意可得 A=2,T==8,解得ω=
故函数f(x)=2sin(x+).
(2)∵函数f(x)图象上的两点P,Q的横坐标依次为2,4,O为坐标原点,
∵f(2)=2sin()=2cos=,f(4)=2sin()=-2sin=-
∴P(2, )、Q(4,-),|OP|=,|PQ|=2,|OQ|=3
∴cos∠POQ===
点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,余弦定理的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年浙江省金华市东阳市南马高中高三(上)期中数学试卷(解析版) 题型:解答题

已知函数(其中x∈R,A>0,ω>0)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个点为
(1)求f(x)的解析式;
(2)已知m∈R,p:关于x的不等式f(x)≥m2+2m-2对恒成立;q:函数y=(m2-1)x是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省杭州市萧山中学高三(上)10月段考数学试卷(理科)(解析版) 题型:解答题

已知函数(其中x∈R,A>0,ω>0)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个点为
(1)求f(x)的解析式;
(2)若求函数f(x)的值域;
(3)将函数y=f(x)的图象向左平移个单位,再将图象上各点的横坐标变为原来的2倍,纵坐标不变,求经以上变换后得到的函数解析式.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省杭州市学军中学高三第二次月考数学试卷(文科)(解析版) 题型:选择题

已知函数,其中x∈R,则下列结论中正确的是( )
A.f(x)是最小正周期为π的偶函数
B.f(x)的一条对称轴是
C.f(x)的最大值为2
D.将函数的图象左移得到函数f(x)的图象

查看答案和解析>>

科目:高中数学 来源:2010年黑龙江省哈尔滨九中高考数学四模试卷(文科)(解析版) 题型:选择题

已知函数,其中x∈R,则下列结论中正确的是( )
A.f(x)是最小正周期为π的偶函数
B.f(x)的一条对称轴是
C.f(x)的最大值为2
D.将函数的图象左移得到函数f(x)的图象

查看答案和解析>>

科目:高中数学 来源:2010年天津市十二区县重点中学高三联考数学试卷1(理科)(解析版) 题型:选择题

已知函数,其中x∈R,则下列结论中正确的是( )
A.f(x)是最小正周期为π的偶函数
B.f(x)的一条对称轴是
C.f(x)的最大值为2
D.将函数的图象左移得到函数f(x)的图象

查看答案和解析>>

同步练习册答案