【题目】在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若
=
+
,则
+
的最大值为__________.
【答案】![]()
【解析】分析:如图:以A为原点,以AB,AD所在的直线为x,y轴建立如图所示的坐标系,先求出圆的标准方程,再设点P的坐标为(
cosθ+1,
sinθ+2),根据
=λ
+μ
,求出λ,μ,根据三角函数的性质即可求出最值.
详解:如图:以A为原点,以AB,AD所在的直线为x,y轴建立如图所示的坐标系,
则A(0,0),B(1,0),D(0,2),C(1,2),
![]()
∵动点P在以点C为圆心且与BD相切的圆上,
设圆的半径为r,
∵BC=2,CD=1,
∴BD=
=![]()
∴
BCCD=
BDr,
∴r=
,
∴圆的方程为(x﹣1)2+(y﹣2)2=
,
设点P的坐标为(
cosθ+1,
sinθ+2),
∵
=λ
+μ
,
∴(
cosθ+1,
sinθ+2)=λ(1,0)+μ(0,2)=(λ,2μ),
∴
cosθ+1=λ,
sinθ+2=2μ,
∴λ+μ=
cosθ+
sinθ+2=sin(θ+φ)+2,其中tanφ=2,
∵﹣1≤sin(θ+φ)≤1,
∴1≤λ+μ≤3,
故λ+μ的最大值为3,
故答案为:3.
科目:高中数学 来源: 题型:
【题目】已知点A(1,2),过点P(5,﹣2)的直线与抛物线y2=4x相交于B,C两点,则△ABC是( )
A.直角三角形
B.钝角三角形
C.锐角三角形
D.不能确定
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为普及高中生安全逃生知识与安全防护能力,某学校高一年级举办了高中生安全知识与安全逃生能力竞赛.该竞赛分为预赛和决赛两个阶段,预赛为笔试,决赛为技能比赛.先将所有参赛选手参加笔试的成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.
分数(分数段) | 频数(人数) | 频率 |
[60,70) | 9 | x |
[70,80) | y | 0.38 |
[80,90) | 16 | 0.32 |
[90,100) | z | s |
合计 | p | 1 |
(Ⅰ)求出上表中的x,y,z,s,p的值;
(Ⅱ)按规定,预赛成绩不低于90分的选手参加决赛,参加决赛的选手按照抽签方式决定出场顺序.已知高一二班有甲、乙两名同学取得决赛资格.
①求决赛出场的顺序中,甲不在第一位、乙不在最后一位的概率;
②记高一二班在决赛中进入前三名的人数为X,求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列判断错误的是
A. 若随机变量
服从正态分布
,则
;
B. 若
组数据
的散点都在
上,则相关系数
;
C. 若随机变量
服从二项分布:
, 则
;
D.
是
的充分不必要条件;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点A(0,﹣1)是抛物线C:x2=2py(p>0)准线上的一点,点F是抛物线C的焦点,点P在抛物线C上且满足|PF|=m|PA|,当m取最小值时,点P恰好在以原点为中心,F为焦点的双曲线上,则此双曲线的离心率为( )
A.![]()
B.![]()
C.
+1
D.
+1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的前
项和为
,满足
,
.数列
满足
,
,且
.
(1)求数列
和
的通项公式;
(2)若
,数列
的前
项和为
,对任意的
,都有
,求实数
的取值范围;
(3)是否存在正整数
,
,使
,
,
(
)成等差数列,若存在,求出所有满足条件的
,
,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
(a>b>0),四点P1(1,1),P2(0,1),P3(–1,
),P4(1,
)中恰有三点在椭圆C上.
(1)求C的方程;
(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,a,b,c分别是角A,B,C的对边,且2cosAcosC(tanAtanC﹣1)=1.
(Ⅰ)求B的大小;
(Ⅱ)若
,
,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
满足
.
(Ⅰ)当
时,解不等式
;
(Ⅱ)若关于x的方程
的解集中有且只有一个元素,求a的值;
(Ⅲ)设
,若对
,函数
在区间
上的最大值与最小值的差不超过1,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com