精英家教网 > 高中数学 > 题目详情
已知等比数列{an}中,a1=2,a4=16.
(1)求数列{an}的通项公式;
(2)设等差数列{bn}中,b2=a2,b9=a5,求数列{bn}的通项公式;
(3)在(2)问的条件下求数列{anbn}的前n项和Sn
分析:(1)利用等比数列的通项公式即可得出;
(2)利用等差数列的通项公式即可得出;
(30利用“错位相减法”和等比数列的前n项和公式即可得出.
解答:解:(1)设等比数列{an}的公比为q,∵a1=2,a4=16,∴2q3=16,解得q=2.
an=2×2n-1=2n
(2)设等差数列{bn}的公差为d,
∵b2=a2,b9=a5
b1+d=22
b1+8d=25
,解得
b1=0
d=4

∴bn=0+(n-1)×4=4n-4.
(3)∵anbn=(4n-4)•2n=(n-1)•2n+2
Sn=0+24+2•25+3•26+…+(n-1)•2n+2
2Sn=25+2•26+…+(n-2)•2n+2+(n-1)•2n+3
∴-Sn=24+25+…+2n+2-(n-1)•2n+3=
23(2n-1)
2-1
-23-(n-1)•2n+3
=2n+3-24-(n-1)•2n+3=(2-n)•2n+3-16.
Sn=16+(n-2)•2n+3
点评:本题考查了等比数列与等比数列的通项公式、“错位相减法”和等比数列的前n项和公式等基础知识与基本技能方法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、已知等比数列{an}的前n项和为Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,则q等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a2=9,a5=243.
(1)求{an}的通项公式;
(2)令bn=log3an,求数列{
1bnbn+1
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}满足a1•a7=3a3a4,则数列{an}的公比q=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中a1=64,公比q≠1,且a2,a3,a4分别为某等差数列的第5项,第3项,第2项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a3+a6=36,a4+a7=18.若an=
12
,则n=
9
9

查看答案和解析>>

同步练习册答案