【题目】函数
,
(
).
(Ⅰ)若
,设
,试证明
存在唯一零点
,并求
的最大值;
(Ⅱ)若关于
的不等式
的解集中有且只有两个整数,求实数
的取值范围.
【答案】(1)见解析(2)![]()
【解析】试题分析:(1)先求函数导数,得函数单调递减,则零点至多一个;再根据零点存在定理说明至少一个零点,两者结合得结论,最后根据函数单调性求最值(2)先变量分离得
,再利用导数研究函数
单调性,结合图像可得有且只有两个整数的条件,即为实数
的取值范围.
试题解析:(Ⅰ)证明:由题知
,
于是
,
令
,则
(
),
∴
在
上单调递减.
又
,
,
所以存在
,使得
,
综上
存在唯一零点
.
当
,
,于是
,
在
单调递增;
当
,
,于是
,
在
单调递减.
故
,
又
,
,
,
故
.
(Ⅱ) ![]()
令
,则
,
令
,则
在
上单调递增.
又
,
,
∴存在
,使得
.
∴当
,
,即
,
在
单调递减;
当
,
,即
,
在
单调递增.
∵
,
,
,
且当
时,
,
又
,
,
,
故要使不等式式
解集中有且只有两个整数,
的取值范围应为:
.
科目:高中数学 来源: 题型:
【题目】已知函数
,
,
, ![]()
(1)求证:函数
在点
处的切线恒过定点,并求出定点的坐标;
(2)若
在区间
上恒成立,求
的取值范围;
(3)当
时,求证:在区间
上,满足
恒成立的函数
有无穷多个.(记
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)是定义在R上的函数,对任意实数m,n,都有f(m)f(n)=f(m+n),且当x<0时,0<f(x)<1.
(1)证明:①f(0)=1;②当x>0时,f(x)>1;③f(x)是R上的增函数;
(2)设a∈R,试解关于x的不等式f(x2﹣3ax+1)f(﹣3x+6a+1)≤1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,已知曲线
的参数方程为
(
,
为参数).以坐标原点
为极点,
轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线
的极坐标方程为
.
(Ⅰ)当
时,求曲线
上的点到直线
的距离的最大值;
(Ⅱ)若曲线
上的所有点都在直线
的下方,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
,若方程f(x)=a有四个不同的解x1 , x2 , x3 , x4 , 且x1<x2<x3<x4 , 则x3(x1+x2)+
的取值范围是( )
A.(﹣1,+∞)
B.(﹣1,1]
C.(﹣∞,1)
D.[﹣1,1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(2﹣a)(x﹣1)﹣2lnx,g(x)=
(a∈R,e为自然对数的底数)
(Ⅰ)当a=1时,求f(x)的单调区间;
(Ⅱ)若函数f(x)在
上无零点,求a的最小值;
(Ⅲ)若对任意给定的x0∈(0,e],在(0,e]上总存在两个不同的xi(i=1,2),使得f(xi)=g(x0)成立,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com