【题目】已知直线
过坐标原点
,圆
的方程为
.
(1)当直线
的斜率为
时,求
与圆
相交所得的弦长;
(2)设直线
与圆
交于两点
,且
为
的中点,求直线
的方程.
【答案】(1)
;(2) 直线l的方程为y=x或y=﹣x.
【解析】试题分析:(1) 由已知,直线
的方程为
,圆
圆心为
,半径为
,求出圆心到直线
的距离,根据勾股定理可求
与圆
相交所得的弦长;(2)设直线
与圆
交于两点
,且
为
的中点,设
,则
,将
点的坐标代入椭圆方程求出
的坐标,即可求直线
的方程.
试题解析:(1)由已知,直线l的方程为y=
x,圆C圆心为(0,3),半径为
,
所以,圆心到直线l的距离为
=
.…
所以,所求弦长为2
=2
.
(2) 设A(x1,y1),因为A为OB的中点,则B(2x1,2y1).
又A,B在圆C上,
所以 x12+y12﹣6y1+4=0,4x12+4y12﹣12y1+4=0.
解得y1=1,x1=±1,
即A(1,1)或A(﹣1,1)
所以,直线l的方程为y=x或y=﹣x.
科目:高中数学 来源: 题型:
【题目】解答题
(1)求函数f(x)=xlnx﹣(1﹣x)ln(1﹣x)在0<x≤
上的最大值;
(2)证明:不等式x1﹣x+(1﹣x)x≤
在(0,1)上恒成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知6只小白鼠有1只被病毒感染,需要通过对其化验病毒DNA来确定是否感染.下面是两种化验方案:方案甲:逐个化验,直到能确定感染为止.方案乙:将6只分为两组,每组三个,并将它们混合在一起化验,若存在病毒DNA,则表明感染在这三只当中,然后逐个化验,直到确定感染为止;若结果不含病毒DNA,则在另外一组中逐个进行化验.
(1)求依据方案乙所需化验恰好为2次的概率.
(2)首次化验化验费为10元,第二次化验化验费为8元,第三次及其以后每次化验费都是6元,列出方案甲所需化验费用的分布列,并估计用方案甲平均需要化验费多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)如图,曲线
由上半椭圆
和部分抛物线
连接而成,
的公共点为
,其中
的离心率为
.
![]()
(Ⅰ)求
的值;
(Ⅱ)过点
的直线
与
分别交于
(均异于点
),若
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
是定义在
上的偶函数,且当
时,
.
![]()
(1)已画出函数
在
轴左侧的图像,如图所示,请补出完整函数
的图像,并根据图像写出函数
的增区间;
⑵写出函数
的解析式和值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知点
分别是Δ
的边
的中点,连接
.现将
沿
折叠至Δ
的位置,连接
.记平面
与平面
的交线为
,二面角
大小为
.
![]()
![]()
(1)证明: ![]()
(2)证明: ![]()
(3)求平面
与平面
所成锐二面角大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数
的图象向左平移
个单位,再向下平移4个单位,得到函数g(x)的图象,则函数f(x)的图象与函数g(x)的图象( )
A.关于点(﹣2,0)对称
B.关于点(0,﹣2)对称
C.关于直线x=﹣2对称
D.关于直线x=0对称
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,将边长为2,有一个锐角为60°的菱形ABCD,沿着较短的对角线BD对折,使得
,O为BD的中点.
(Ⅰ)求证:![]()
(Ⅱ)求三棱锥
的体积;
(Ⅲ)求二面角A-BC-D的余弦值.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com