(本题满分14分) 已知正四棱锥P-ABCD中,底面是边长为2 的正方形,高为
.M为线段PC的中点.
(Ⅰ) 求证:PA∥平面MDB;
(Ⅱ) N为AP的中点,求CN与平面MBD所成角的正切值.![]()
(Ⅰ)![]()
证明:在四棱锥P-ABCD中,连结AC交BD于点O,连结OM,PO.由条件可得PO=
,AC=2
,PA=PC=2,CO=AO=
.
因为在△PAC中,M为PC的中点,O为AC的中点,
所以OM为△PAC的中位线,得OM∥AP,
又因为AP
平面MDB,OM
平面MDB,
所以PA∥平面MDB. …………6分
(Ⅱ) 解:设NC∩MO=E,由题意得BP=BC=2,且∠CPN=90°.
因为M为PC的中点,所以PC⊥BM,
同理PC⊥DM,故PC⊥平面BMD.
所以直线CN在平面BMD内的射影为直线OM,∠MEC为直线CN与平面BMD所成的角,
又因为OM∥PA,所以∠PNC=∠MEC.
在Rt△CPN中,CP=2,NP=1,所以tan∠PNC=
,
故直线CN与平面BMD所成角的正切值为2.
解析
科目:高中数学 来源: 题型:解答题
(本小题满分14分)如图,在三棱锥
中,面
面
,
是正三角形,
,
.
(Ⅰ)求证:
;
(Ⅱ)求平面DAB与平面ABC的夹角的余弦值;
(Ⅲ)求异面直线
与
所成角的余弦值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题共12分)如图,四棱锥
的底面是直角梯形,
,
,
和
是两个边长为
的正三角形,
,
为
的中点,
为
的中点.
(Ⅰ)求证:
平面
;
(Ⅱ)求证:
平面
;
(Ⅲ)求直线
与平面
所成角的正弦值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在直三棱柱ABC-
中,
,D,E分别为BC,
的中点,
的中点,四边形
是边长为6的正方形.![]()
(1)求证:
平面
;
(2)求证:
平面
;
(3)求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在直三棱柱ABC-A1B1C1中,AC=BC=2,AA1=2
,∠ACB=900,M是AA1的中点,N是BC1的中点.![]()
(1)求证:MN//平面A1B1C1;
(2)求二面角B-C1M-C的平面角余弦值的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,
为圆
的直径,点
、
在圆
上,且
,矩形
所在的平面和圆
所在的平面互相垂直,且
,
.
(Ⅰ)求证:
平面
;
(Ⅱ)设
的中点为
,求证:
平面
;
(Ⅲ)设平面
将几何体
分割成的两个锥体的体积分别为
、
,求
的值![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分15分)在直角梯形A1A2A3D中,A1A2⊥A1D,A1A2⊥A2A3,且B,C分别是边A1A2,A2A3上的一点,沿线段
BC,CD,DB分别将△BCA2,△CDA3,△DBA1翻折上去恰好使A1,A2,A3重合于一点A。
(Ⅰ)求证:AB⊥CD;
(Ⅱ)已知A1D=10,A1A2=8,求二面角A-BC-D的余弦值。![]()
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
平面α经过三点A(-1,0,1),B(1,1,2),C(2,-1,0),则下列向量中与平面α的法向量不垂直的是( )
| A.( | B.(6,-2,-2) |
| C.(4,2,2) | D.(-1,1,4) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com