【题目】如图,在矩形
中,已知
,点
、
分别在
、
上,且
,将四边形
沿
折起,使点
在平面
上的射影
在直线
上.
![]()
![]()
(I)求证:
;
(II)求点
到平面
的距离;
(III)求直线
与平面
所成的正弦值.
【答案】(1)见解析(2)2(3)![]()
【解析】试题分析:
(1)由折叠关系可得
平面
,
.
(2)利于题意结合勾股定理列方程组,求解可得点
到平面
的距离为2;
(3)做出直线与平面所成的角,结合(1)(2)的结论可得直线
与平面
所成的正弦值为
.
试题解析:
解:(1)由于
平面
,
,又由于
,
,
平面
,
.
法一:(2)设
,
,过
作
垂直
于
,
因线段
,
在翻折过程中长度不变,根据勾股定理:
,可解得
,
线段
长度为
,即点
的平面
的距离为
.
(2)延长
交
于点
,因为![]()
点
到平面
的距离为点
到平面
距离的
,
点
平面
的距离为
,而
,
直线
与平面
新角的正弦值为
.
![]()
法二:(2)如图,过点
作
,过点
作
平面
,分别以
、
、
为
、
、
轴建立空间直角坐标系,设点
,由于
,
解得
于是
,所以线段
的长度为
.
即点
到平面
的距离为
.
(3)从而
,故
,
设平面
的一个法向量为
,设直线
与平面
所成角的大小为
,
则![]()
科目:高中数学 来源: 题型:
【题目】f(x)是定义在R上的奇函数,对x,y∈R都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,f(-1)=2.
(1)求证:f(x)为奇函数;
(2)求证:f(x)是R上的减函数;
(3)求f(x)在[-2,4]上的最值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费
(单位:千元)对年销售量
(单位:t)和年利润
(单位:千元)的影响.对近8年的年宣传费
和年销售量
(i=1,2,…,8)数据作了初步处理,得到右面的散点图及一些统计量的值.
![]()
|
|
|
|
|
|
|
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
表中
, ![]()
(1)根据散点图判断,
与
哪一个适宜作为年销售量
关于年宣传费
的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立
关于
的回归方程;
(3)已知这种产品的年利润
与
的关系为
.根据(2)的结果回答下列问题:
①年宣传费
=49时,年销售量及年利润的预报值是多少?
②年宣传费
为何值时,年利润的预报值最大?
附:对于一组数据
,
…,
,其回归直线
的斜率和截距的最小二乘估计分别为
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(Ⅰ)当0≤x≤200时,求函数v(x)的表达式;
(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=xv(x)可以达到最大,并求出最大值.(精确到1辆/小时).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】5名男生4名女生站成一排,求满足下列条件的排法:
(1)女生都不相邻有多少种排法?
(2)男生甲、乙、丙排序一定(只考虑位置的前后顺序),有多少种排法?
(3)男甲不在首位,男乙不在末位,有多少种排法?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,直线
的参数方程为
(其中
为参数),现以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,已知曲线
的极坐标方程为
.
(1)写出直线
和曲线
的普通方程;
(2)已知点
为曲线
上的动点,求
到直线
的距离的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com